THE UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

FINAL EXAMINATION

CHEMISTRY 351

DECEMBER 15th 2000
Time: 3 Hours

READ ALL THE INSTRUCTIONS CAREFULLY

PLEASE WRITE YOUR NAME, STUDENT I.D. NUMBER ON BOTH YOUR EXAM ANSWER BOOKLET AND COMPUTER ANSWER SHEET.

The examination consists of Parts $1-9$, each of which should be attempted. Note that some Parts provide you with a choice of questions, i.e. answer 4 out of 5. These will be graded in numerical order until the required number have been completed, regardless of whether they are right or wrong. Parts 1-5 will be computer graded, and Parts 6-9 are to be answered in the answer booklet provided. A periodic table with atomic numbers and atomic weights is appended to the exam.

Parts 1-5 consist of a series of multiple choice questions numbered 1-43, which are to be answered on your computer answer sheet. Indicate your answer by blackening out the appropriate space, A, B, C, D or E on the answer sheet. Use a pencil only and not ink. In some cases it is required that you indicate multiple items for a complete and/or correct answer by blackening out more than one space. In some other cases more than five options are available and some of these also require more than one space to be blackened out. For an example, an option specified as AB requires that you blacken out both space A and space B. Part marks may be awarded in some of the questions. Incorrect answers must be erased cleanly.

Molecular models are permitted during the exam; calculators are also permitted, but NOT programmable calculators.

PART 1 RELATIVE PROPERTIES

20\% ANSWER ANY TEN (10) OF QUESTIONS 1 TO 14.

Arrange the items in questions 1-14 in DECREASING ORDER (i.e. greatest, most etc. first) with respect to the indicated property.

Use the following code to indicate your answers.
A. $\quad \mathbf{i}>\mathbf{i i}>\mathbf{i i i}$
D. $\quad \mathbf{i i}>\mathbf{i i i}>\mathbf{i}$
B. $\quad \mathbf{i}>\mathbf{i i i}>\mathbf{i i}$
E. \quad iii $>\mathbf{i}>$ ii
C. \quad ii $>$ i $>$ iii
AB. \quad iii $>\mathbf{i i}>\mathbf{i}$

1. The relative stability of the following carbocations:

(i)

(ii)

(iii)
2. The relative nucleophilicity of the following in a polar, protic solvent:

(i)

(ii)

(iii)
3. The relative acidity of the most acidic hydrogen in each of the following:

(i)
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(ii)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}$
(iii)
4. The index of hydrogen deficiency (IHD) of the following:

(i)
$\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{OCl} \quad$ cyanocyclobutane
(ii)

Use the following code to indicate your answers.
A. $\quad \mathbf{i}>\mathbf{i i}>\mathbf{i i i}$
D. $\quad \mathbf{i i}>\mathbf{i i i}>\mathbf{i}$
B. \quad i $>\mathbf{i i i}>\mathbf{i i}$
E. \quad iii $>\mathbf{i}>$ ii
C. \quad ii $>\mathbf{i}>$ iii
AB. \quad iii $>\mathbf{i i}>\mathbf{i}$
5. The number of peaks seen in the broadband decoupled 13 C nmr spectrum for each of the following:

(i)

(ii)

(iii)
6. The relative rate of reaction of each of the following with HBr :

(i)

(ii)

(iii)
7. The number of peaks in the coupling pattern in the H nmr spectra corresponding to the group in bold in each of the following:

(i)

(ii)

(iii)
8. The relative rates of reaction with NaF in DMSO of each of the following:
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Cl}$
(i)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$
(ii)
$\mathrm{CH}_{3}-\mathrm{OH}$
(iii)

Use the following code to indicate your answers.
A. $\quad \mathbf{i}>\mathbf{i i}>\mathbf{i i i}$
D. \quad ii $>\mathbf{i i i}>\mathbf{i}$
B. \quad i $>\mathbf{i i i}>$ ii
E. \quad iii $>\mathbf{i}>$ ii
C. \quad ii $>\mathbf{i}>$ iii
AB. \quad iii $>\mathbf{i i}>\mathbf{i}$
9. The relative lengths of the indicated bonds in each of the following :

(i)

(ii)

(iii)
10. The relative yields of the following products from the reaction of 2,2-dimethylbutane with Cl_{2} / UV light:

(i)

(ii)

(iii)
11. The relative yields of the Zaitsev product produced by the reaction of 2-bromo-2,3dimethylbutane with each of the following:

(i)
NaOCH_{3}
(ii)
$\mathrm{NaOC}\left(\mathrm{CH}_{3}\right)_{3}$
(iii)
12. The boiling points of the following:
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OH}$
(i)
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC}\left(\mathrm{CH}_{3}\right)_{3}$
(ii)

$$
\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}
$$

(iii)

Use the following code to indicate your answers.
A. $\quad \mathbf{i}>\mathbf{i}>\mathbf{i i i}$
D. \quad ii $>\mathbf{i i i}>\mathbf{i}$
B. \quad i $>\mathbf{i i i}>$ ii
E. \quad iii $>\mathbf{i}>$ ii
C. \quad ii $>\mathbf{i}>$ iii
AB. \quad iii $>\mathbf{i i}>\mathbf{i}$
13. The heats of hydrogenation of the following alkenes (most endothermic to most exothermic):

(i)

(ii)

(iii)
14. The ability of the group in bold to be substituted:

(i)

(ii)

(iii)
nb. Ts- $=$ tosylate $=$

PART 2: LABORATORY

10\%

ANSWER ALL FIVE (5) OF THE QUESTIONS 15-19.

Questions 15-19 are based on the laboratory component of the course. In each case select ALL of the statements that are true. In some questions, MORE THAN ONE STATEMENT MAY BE CORRECT.

15. 1.09 g of p -aminophenol ($\mathrm{mw}=109 \mathrm{~g} / \mathrm{mol}$) was reacted with 1.12 g of acetic anhydride ($\mathrm{mw}=102 \mathrm{~g} / \mathrm{mol}$), and a 75% yield of acetaminophen $(\mathrm{mw}=151 \mathrm{~g} / \mathrm{mol})$ was obtained. How many g of acetaminophen were obtained?

A 1.51 g
B $\quad 1.24 \mathrm{~g}$
C 1.13 g
D 0.84 g
E 0.82 g
16. In the experiment about the reactivity of alcohols, which of the following statements are true?

A the Lucas test $\left(\mathrm{HCl} / \mathrm{ZnCl}_{2}\right)$ is an example of an SN 2 reaction.
B the secondary alcohols were oxidised to carboxylic acids.
C sulphuric acid was used as an oxidising agent.
D the relative reactivity towards dehydration was $3^{\circ}>2^{\circ}>1^{\circ}$.
\mathbf{E} the layer that forms in the Lucas test is the alkyl chloride.
17. In the experiment about the reactivity of alcohols, which of the following statements about the reagent bromine in chloroform are true ?

A the bromine reacts with the alcohol.
B bromine in chloroform is a colourless solution.
C if an alkene is presented, a colourless dibromide is formed.
D the reaction of bromine with the alkene is an example of a substitution reaction.
E a white precipitate of NaBr forms.
18. In the experiment about the reactivity of alkyl halides, which of the following statements about the reactions with NaI / acetone are true ?

A acetone is an example of a polar, aprotic solvent.
B sodium iodide is insoluble in acetone.
C this is an example of E 2 reaction.
D the tertiary chloride reacted the fastest under these reaction conditions.
E chlorine is a better leaving group than bromine.
19. In the experiment about the reactivity of alkyl halides, which of the following statements about the reactions with $\mathrm{AgNO}_{3} /$ aq. ethanol are true ?

A bromides were more reactive than similar chlorides.
B if water reacts as a nucleophile, the product is an alcohol.
C silver nitrate is used to enhance the nucleophilicity of the water.
D the tertiary chloride reacted rapidly under these conditions.
\mathbf{E} the solvent is polar and favours the carbocation intermediate.

PART 3: REACTIONS

14\% ANSWER ANY SEVEN (7) OF QUESTIONS 20-27.

For each of questions $\mathbf{2 0 - 2 7}$ select either the major product or the starting material required in order to complete each of the reaction schemes
20.

21.

A

B

C

D

E
22.

A

B

C

D

E
23.

A

B

C

D

E
24.

25.

26.

A

B

C

D

E
27.

PART 4: REAGENTS FOR REACTIONS

10\% ANSWER ANY FIVE (5) OF QUESTIONS 28-33.
For each of questions 28-33 select the best reagent in order to complete each of the reaction schemes.
28.

A conc. $\mathrm{H}_{2} \mathrm{SO}_{4} /$ heat
D 1. $\mathrm{TsCl} / \mathrm{Et}_{3} \mathrm{~N}$
2. $\mathrm{KOH} / \mathrm{EtOH} /$ heat
B $\mathrm{KOH} / \mathrm{EtOH} /$ heat
E 1. $\mathrm{TsCl} / \mathrm{Et}_{3} \mathrm{~N}$
2. $\mathrm{KOtBu} / \mathrm{DMSO} /$ heat
29.

A conc. $\mathrm{H}_{2} \mathrm{SO}_{4} /$ heat
D 1. $\mathrm{TsCl} / \mathrm{Et}_{3} \mathrm{~N}$
B $\mathrm{KOH} / \mathrm{EtOH} /$ heat
2. $\mathrm{KOH} / \mathrm{EtOH} /$ heat
C KOtBu / DMSO / heat
E 1. $\mathrm{TsCl} / \mathrm{Et}_{3} \mathrm{~N}$
2. $\mathrm{KOtBu} / \mathrm{DMSO} /$ heat
30.

A $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
D 1. $\mathrm{TsCl} / \mathrm{Et}_{3} \mathrm{~N}$
B $\mathrm{CH}_{3} \mathrm{OH} /$ heat
2. $\mathrm{NaOCH}_{3} / \mathrm{CH}_{3} \mathrm{OH}$
C 1. Na 2. $\mathrm{CH}_{3} \mathrm{I}$
E $\mathrm{NaOCH}_{3} / \mathrm{CH}_{3} \mathrm{OH}$
31.

A $\mathrm{Br}_{2} /$ uv light
B HBr
D $1 . \mathrm{Cl}_{2} /$ uv light 2. $\mathrm{NaBr} / \mathrm{DMSO}$
C $\mathrm{NaBr} / \mathrm{DMSO}$
E 1. $\mathrm{PCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}$ 2. $\mathrm{NaBr} / \mathrm{DMSO}$
32.

A aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$
D 1. Br_{2} /uv light
B conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C KOH / heat
E 1. KOH / heat
2. $\mathrm{NaBr} / \mathrm{DMSO}$
33.

A $\mathrm{Br}_{2} /$ uv light
B HBr
D $\mathrm{NaBr} / \mathrm{DMSO}$
C $\mathrm{PBr}_{3} / \mathrm{Et}_{3} \mathrm{~N}$
E $\mathrm{NaBr} / \mathrm{H}_{2} \mathrm{SO}_{4}$

PART 5: MECHANISMS

8\% ANSWER ANY EIGHT (8) OF QUESTIONS 34-43.

For each of questions 34-43 select the term from the list provided below that corresponds best with each phrase.

A Walden	AB carbanion	BD leaving group
B Williamson	AC carbocation	BE staggered
C Zaitsev	AD radical	CD anti-periplanar
D nucleophile	AE stepwise	CE steric effect
E electrophile	BC concerted	DE homolytic

34. an intermediate in a nucleophilic substitution reaction
35. a reaction where all the bond changes occur simultaneously
36. the more highly substituted alkene product
37. a group that is displaced with the bonding electrons
38. the spatial requirement in an E2 reaction
39. why SN 2 reactions are slow for 3° substrates
40. a species with a single unpaired electron

41 the inversion in an SN2 reaction
42. formed during the rate determining step of an E1 reaction
43. a bond breaking process resulting in unpaired electrons

PART 6: SYNTHESIS

9\% DESIGN EFFICIENT SYNTHESES OF ANY THREE (3) of the following target molecules using any of the starting materials shown below.

WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED.
DO NOT SHOW MECHANISMS.

TARGETS

cyclohexene
ethoxycyclohexane
diethyl ether
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}$

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$

Allowed Starting Materials:

In addition you may use any solvents and /or inorganic reagents required.

PART 7: MECHANISMS

9\% WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED ANSWER ANY THREE (3) OF THE QUESTIONS I to IV.

Using curly arrow mechanisms, explain the following observations:
I.

II.

III.

IV.

PART 8: SPECTROSCOPY

10\% WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED

Show your workings as PARTIAL marks will be given.
From the data provided below, identify the structure of the "unknown" molecule.
Elemental analysis : $73.15 \% \mathrm{C}$ and $7.37 \% \mathrm{H}$ (by weight).

PART 9: STRUCTURE DETERMINATION

10\% WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED

Hydrocarbon $\mathbf{A}, \mathrm{C}_{6} \mathrm{H}_{14}$, was reacted with Br_{2} / uv light to give $\mathbf{B}, \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Br}$ as the major product. Subsequent reaction of \mathbf{B} by heating with $\mathrm{KOH} / \mathrm{EtOH} /$ heat gave a new hydrocarbon $\mathbf{C}, \mathrm{C}_{6} \mathrm{H}_{12}$ (IR absorption : $1650 \mathrm{~cm}^{-1}$). It was found that \mathbf{C} could be converted back to \mathbf{A} using H_{2} / Pd catalyst.

Reaction of B with $\mathrm{H}_{2} \mathrm{O} / \mathrm{Na}_{2} \mathrm{CO}_{3}$ gave D, $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$ (IR absorption : $3500 \mathrm{~cm}^{-1}$, broad). When \mathbf{D} was reacted with HBr compound \mathbf{E} an isomer of \mathbf{B} was obtained. Subsequent reaction of \mathbf{E} by heating with $\mathrm{KOH} / \mathrm{EtOH} /$ heat gave \mathbf{F} an isomer of \mathbf{C} (IR absorption : $1650 \mathrm{~cm}^{-1}$).

Oxidation of \mathbf{D} with a chromate reagent gave $\mathbf{G}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ (IR absorption : $1715 \mathrm{~cm}^{-1}$).

Compounds $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$ and \mathbf{G} all had 4 peaks in the ${ }^{13} \mathrm{C} \mathrm{nmr}$ and \mathbf{F} has only 2 peaks.

Identify the compounds A-G.
$* * * *$ THE END $* * * *$

