THE UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

MIDTERM EXAMINATION

CHEMISTRY 351 / 354

OCTOBER 17th 2001
Time: 2 Hours

READ THE INSTRUCTIONS CAREFULLY

PLEASE WRITE YOUR NAME, STUDENT I.D. NUMBER ON BOTH YOUR ANSWER BOOKLET AND COMPUTER ANSWER SHEET.

The examination consists of Parts $1-8$, each of which should be attempted. Note that some parts provide you with a choice of questions, i.e. answer 4 out of 5 . These will be graded in numerical order until the required number have been graded, regardless of whether they are right or wrong. Parts 1-5 will be computer graded, and only Parts 6,7 , and 8 are to be answered in the booklet provided. A periodic table with atomic numbers and atomic weights is located on the inside of this front cover.

Parts 1-5 consist of a series of multiple choice questions numbered 1-39 which are to be answered on your computer answer sheet. Indicate your answer by blackening out the appropriate space, A, B, C, D or E on the answer sheet. Use a pencil only and not ink. In some cases it is required that you indicate multiple items for a complete and/or correct answer by blackening out more than one space. In some other cases more than five options are available and some of these also require more than one space to be blackened out. For an example, an option specified as AB requires that you blacken out both space A and space B. Part marks may be awarded in some of the questions. Incorrect answers must be erased cleanly.

Molecular models are permitted during the exam; calculators are also permitted, but NOT programmable calculators.

14 PART 1 RELATIVE PROPERTIES

ANSWER ANY SEVEN (7) of questions 1-8.
Arrange the items in questions 1-8 in DECREASING ORDER (i.e. greatest, most etc. first) with respect to the indicated property.

Use the following code to indicate your answers.
A. $\quad \mathbf{i}>\mathbf{i i}>\mathbf{i i i}$
D. $\quad \mathbf{i i}>\mathbf{i i i}>\mathbf{i}$
B. $\quad \mathbf{i}>\mathbf{i i i}>\mathbf{i}$
C. $\quad \mathbf{i i}>\mathbf{i}>\mathbf{i i i}$
E. $\quad \mathbf{i i i}>\mathbf{i}>\mathbf{i i}$
AB. $\quad \mathbf{i i i}>\mathbf{i i}>\mathbf{i}$

1. The C-C-C bond angle in each of the following molecules:

i

ii
cyclobutane
iii
2. The strength of the $\mathbf{C H}$ bonds in each of the following :
$\mathrm{CH}_{3} \mathrm{CH}_{3}$
i
$\mathrm{CH}_{2} \mathrm{CH}_{2}$
ii
HCCH
iii
3. The relative importance of the following resonance contributors to $\mathrm{CH}_{3} \mathrm{CNO}$:

i

ii
$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{N}=\mathrm{O}$
iii
4. The formal charge on the nitrogen atom in each of the following molecules:

Use the following code to indicate your answers.
A. $\quad \mathbf{i}>\mathbf{i i}>\mathbf{i i i}$
D. $\quad \mathbf{i i}>\mathbf{i i i}>\mathbf{i}$
B. $\mathbf{i}>\mathbf{i i i}>\mathbf{i i}$
C. $\quad \mathbf{i i}>\mathbf{i}>\mathbf{i i i}$
E. \quad iii $>\mathbf{i}>\mathbf{i i}$

AB. $\quad \mathbf{i i i}>\mathbf{i i}>\mathbf{i}$
5. The relative energies of the following conformations of cyclohexane :

i

ii

iii
6. The heat of combustion, $\Delta \mathrm{H}_{\mathrm{c}}{ }^{\circ}$ for each of the following molecules: (least exothermic to most exothermic)

i

ii

iii
7. The number of constitutional isomers for the following molecular formulae:

i
$\mathrm{C}_{3} \mathrm{H}_{6}$
$\mathrm{C}_{6} \mathrm{H}_{14}$
iii
8. The relative energies of the following orbitals of a carbon atom:

sp^{3}	sp^{2}	sp
\mathbf{i}	ii	iii

10 PART 2: LABORATORY

ANSWER ALL of the questions 9-18.

For questions 9-18, select the letter label on the diagram of the apparatus used in the DISTILLATION experiment that corresponds to the equipment / set-up indicated by the question number below.

9. Condenser
10. Fractionating column
11. Distilling flask
12. Receiver flask
13. Thermometer adaptor
14. Heating mantle
15. Heating controller
16. Water in
17. Water out
18. Distilling head

14 PART 3: MOLECULAR PROPERTIES

ANSWER ALL of the questions 19-25.
For each of the questions 19-25 about MELATONIN (shown below), select the answer from those provided. In some cases more than one answer may be correct and for full marks all correct answers must be selected.

MELATONIN
19. What is the oxidation state of $\mathbf{C} 3$?
A. +3
B. +2
C. 0
D. -2
E. -3
20. What is the oxidation state of $\mathbf{C 1 7}$?
A. +2
B. +1
C. 0
D. -1
E. -2
21. Which bond is the shortest $\mathbf{C C}$ bond ?
A. C1-C3
B. $\mathrm{C}^{-}-\mathrm{C} 6$
C. C6-C7
D. C7-C8
E. C11-C12
22. What is the functional group in the rectangular box ?
A. Carboxylic Acid
B. Amine
C. Amide
D. Imine
E. Nitro
23. What is the functional group in the circular box ?
A. Carboxylic Acid
B. Ester
C. Ether
D. Alcohol
E. Phenol
24. How many units of unsaturation are there in melatonin ? (units of unsaturation is the same as the index of hydrogen deficiency or IHD)
A. 5 B. 6
C. 7
D. 7.5
E. 8
25. Which of the following atoms in melatonin is NOT considered to be sp 2 hybridised ?
A. $\mathbf{O 2}$
B. N 4
C. C 5
D. N 9
E. C11

12 PART 4: CONFORMATIONAL ANALYSIS

ANSWER ALL of the questions 26-31.
26. Which one of the following terms best describes the conformation of cyclohexane shown below?

A axial
B boat
C chair
D equatorial
E twist boat
27. Which of the following terms best describes the position of the methyl group in the conformation of cis-1-chloro-4-methylcyclohexane shown below?

A anti

B axial
C chair
D equatorial
E gauche
28. Which term best describes the relationship between a pair of structures with the same molecular formulae that differ due to the presence of different functional groups or branching patterns ?
A: confidential
B: constitutional
C: configurational
D: conformational
E: geometric
AB: not isomers
29. Identify a pair of conformational isomers of methylcyclohexane ?

A

B

C

D

E
30. Which of the following is the best example of torsional strain?

A: the strain of cyclobutane compared to butane
B: the alignment of the $\mathrm{C}-\mathrm{H}$ bonds in cyclopropane
C: the 60° bond angle in cyclopropane
D: the flagpole interaction in boat cyclohexane
E: the 1,3-diaxial interaction in 1,1-dimethylcyclohexane
31. Which of the following represents the most stable conformation of 2,2,3trimethylpentane?

A

D

B

C

AB

Value

14 PART 5: NOMENCLATURE

ANSWER ANY SEVEN (7) of the questions 32-39.

For each of questions 32 to 35 , select the correct name for the compound shown:
32.

A. (E)-5-methyl-3-heptanal
B. (Z)-3-methyl-3-hepten-5-al
C. (E)-5-methyl-4-hepten-3-ol
D. (Z)-5-methyl-4-hepten-3-ol
E. (E)-5-methyl-3-heptanol
33.

A. 5,5-dimethylcyclohexanol
B. 3,3-dimethylcyclohexanone
C. 1,1-dimethylcyclohexanone
D. 3,3-dimethylcyclohexanal
E. 3,3-dimethylcyclohexanol
34.

A. Dibenzyl ether
B. Benzyl phenyl ether
C. Benzyl phenyl ester
D. Diphenyl ether
E. Phenyl benzoate
35.

A. 4-isopropyl-3-(1-methyl-2-pentyl)octane
B. 5-ethyl-4,4-dimethyl-7-(1-methylethyl)decane
C. 6-ethyl-7,7-dimethyl-4-(1-methylethyl)decane
D. 5-ethyl-4,4,8-trimethyl-7-n-propylnonane
E. 2-ethyl-4-isopropyl-1,1-dimethyl-1,4-dipropylbutane

Value
For each of questions 36 to 39, select the correct structure for the name shown:
36. (2Z, 5S)-5-hydroxyhept-2-en-4-one:

37. Ethyl 2-methoxybenzoate:

A

B

C

D

E
38. (S)-N,N-dimethyl-2-aminobutanal:

A.

B.

C.

D.

E.
39. 5-methylbicyclo[2.2.1]hept-2-ene:

A

B

C

D

E

Value

12 PART 6: STRUCTURE DETERMINATION:

Write your answer in the booklet provided. For FULL marks you MUST show your working. PARTIAL marks will be awarded.

THE QUESTIONS IN THIS SECTION SHOULD ALL BE ANSWERED BASED ON THE FOLLOWING DATA:

An elemental analysis was performed on a sample taken from an unlabelled drum found buried in the ground in a former industrial area. The result indicated that the sample contained $83.24 \% \mathrm{C}$ and $16.76 \% \mathrm{H}$ by weight. The sample was further analysed. Fractional distillation gave the only 3 isomeric hydrocarbons of that molecular formula. The boiling points of the isomers were $9^{\circ} \mathrm{C}, 28^{\circ} \mathrm{C}$ and $36^{\circ} \mathrm{C}$.
(a) Use the combustion analysis data to determine the empirical formula.
(b) Draw the 3 isomers.
(c) Provide the IUPAC name of for the 3 compounds from part (b)
(d) For the 3 isomers above, match them to their boiling points. Explain your choice.

Value

12 PART 7: MECHANISM

Write your answer in the booklet provided.

Draw a mechanism sequence using double headed (i.e. electron pair) curly arrows that represents the single reaction sequence described verbally by the following points in which an alkyl halide, 2-phenyl-2-propyl bromide, is hydrolysed in water to give an alcohol, 2-phenyl-2-propanol.

Step 1. Loss of a leaving group from the 2-phenyl-2-propyl bromide creating a bromide ion and a resonance stabilised carbocation.

Step 2. Attack of a molecule of water (as a nucleophile) on this electrophilic carbon leading to the formation of a new CO sigma bond and giving an oxonium ion.

Step 3. An acid - base reaction in which a water molecule removes a proton from the oxonium ion producing the alcohol, 2-phenyl-2-propanol and a hydronium ion.

Draw the four other major resonance contributors of the structure of the carbocation produced in step 1.

Value
12 PART 8: THERMODYNAMICS
Write your answer in the booklet provided. Show your working as PARTIAL marks will be given.

1,2-Dimethylcyclopropane exists as two isomers, cis- and trans- . The heat of formation, $\Delta \mathrm{H}_{\mathrm{f}}$ of isomer I is $+46.45 \mathrm{kcal} / \mathrm{mol}$ and the heat of combustion, $\Delta \mathrm{H}_{\mathrm{c}}$ of isomer II is -804.5 $\mathrm{kcal} / \mathrm{mol}$. Given that the heats of combustion for graphite, $\Delta \mathrm{H}_{\mathrm{c}} \mathrm{C}$ (graphite) $=-94.05$ $\mathrm{kcal} / \mathrm{mol}$ and for hydrogen, $\Delta \mathrm{H}_{\mathrm{c}} \mathrm{H}_{2}$ (gas) $=-57.8 \mathrm{kcal} / \mathrm{mol}$, calculate the heat of combustion, $\Delta \mathrm{H}_{\mathrm{c}}$ for the isomer I and the heat of formation, $\Delta \mathrm{H}_{\mathrm{f}}$ of isomer II.

Identify which of the isomers I and II is cis- and which is trans-.
Based on the data, identify the more stable isomer and explain this based on the conformational features of the structures.

