THE UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

FINAL EXAMINATION

CHEMISTRY 351

December 10th, 2002
Time: 3 Hours

READ ALL THE INSTRUCTIONS CAREFULLY

PLEASE WRITE YOUR NAME, STUDENT I.D. NUMBER ON BOTH YOUR EXAM ANSWER BOOKLET AND COMPUTER ANSWER SHEET.

The examination consists of Parts $1-9$, each of which should be attempted. Note that some Parts provide you with a choice of questions, i.e. answer 4 out of 5 . These will be graded in numerical order until the required number have been completed, regardless of whether they are right or wrong. Parts 1-5 will be computer graded, and Parts 6-9 are to be answered in the answer booklet provided. A periodic table with atomic numbers and atomic weights, and spectroscopic tables are appended to this examination paper.

Parts 1-5 consist of a series of multiple choice questions numbered 1-38, which are to be answered on your computer answer sheet. Indicate your answer by blackening out the appropriate space, A, B, C, D or E on the answer sheet. Use a pencil only and not ink. In some cases it is required that you indicate multiple items for a complete and/or correct answer by blackening out more than one space. In some other cases more than five options are available and some of these also require more than one space to be blackened out. For an example, an option specified as AB requires that you blacken out both space A and space B. Part marks may be awarded in some of the questions. Incorrect answers must be erased cleanly.

Molecular models are permitted during the exam; calculators are also permitted, but NOT programmable calculators.

20\% PART 1 RELATIVE PROPERTIES

ANSWER ANY TEN (10) OF QUESTIONS 1 TO 14.

Arrange the items in questions 1-14 in DECREASING ORDER (i.e. greatest, most etc. first) with respect to the indicated property.

Use the following code to indicate your answers.
A. $\quad \mathbf{i}>\mathbf{i i}>\mathbf{i i i}$
D. $\quad \mathbf{i i}>\mathbf{i i i}>\mathbf{i}$
B. $\quad \mathbf{i}>\mathbf{i i i}>$ ii
E. \quad iii $>\mathbf{i}>$ ii
C. \quad ii $>$ i $>$ iii
AB. \quad iii $>\mathbf{i i}>\mathbf{i}$

1. The relative stability of the following carbocations:

i

ii

iii
2. The relative nucleophilicity of the following anions in aqueous solution:
Cl
F-
I-
i
ii iii
3. The pKa 's of the bold \mathbf{H} atoms indicated in the following structure:

4. The number of peaks seen in the 1 H NMR spectra coupling pattern corresponding to the group indicated in bold in each of the following:

i

ii

iii

Use the following code to indicate your answers.
A. $\quad \mathbf{i}>\mathbf{i i}>$ iii
D. \quad ii $>\mathbf{i i i}>\mathbf{i}$
B. \quad i $>\mathbf{i i i}>\mathbf{i i}$
C. \quad ii $>\mathbf{i}>$ iii
E. \quad iii $>$ i $>$ ii
AB. \quad iii $>\mathbf{i i}>\mathbf{i}$
5. The number of peaks seen in the normal broadband proton decoupled 13C NMR spectrum for each of the following:

i

ii

iii
6. The heats of combustion of each of the following (least exothermic to most exothermic) :

7. The relative strengths of the indicated $\mathbf{H}-\mathbf{X}$ bonds in each of the following:

i

ii

iii
8. The relative rates of reaction of each of the following with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ / heat:

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}
$$

i
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
ii

iii

Use the following code to indicate your answers.
A. $\quad \mathbf{i}>\mathbf{i i}>\mathbf{i i i}$
D. \quad ii $>\mathbf{i i i}>\mathbf{i}$
B. $\quad \mathbf{i}>\mathbf{i i i}>\mathbf{i i}$
E. \quad iii $>\mathbf{i}>$ ii
C. \quad ii $>\mathbf{i}>$ iii
AB. \quad iii $>\mathbf{i i}>\mathbf{i}$
9. The boiling points (at 1 atmosphere pressure) of each of the following :
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
i

ii
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
iii
10. The heats of formation, $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}$, of each of the following (least exothermic to most exothermic) :

$$
\begin{array}{cl}
\mathbf{i} & \text { cis-1,2-dimethylcyclohexane } \\
\text { ii } & \text { trans-1,4-dimethylcyclohexane } \\
\text { iii } & \text { trans-1,2-dimethylcyclohexane }
\end{array}
$$

11. The number of possible alkene isomers that could be produced by the reaction of each of the following by heating with KOH :

i

ii
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br}$
iii
12. The bond stretching frequencies $/ \mathrm{cm}^{-1}$ in the infra-red spectra for the $\mathrm{C}-\mathrm{H}$ bonds in each of the following :

Use the following code to indicate your answers.
A. $\quad \mathbf{i}>\mathbf{i i}>\mathbf{i i i}$
D. \quad ii $>\mathbf{i i i}>\mathbf{i}$
B. $\quad \mathbf{i}>\mathbf{i i i}>\mathbf{i i}$
E. \quad iii $>$ i $>$ ii
C. \quad ii $>\mathbf{i}>$ iii
AB. \quad iii $>\mathbf{i i}>\mathbf{i}$
13. The number of units of unsaturation in each of the following molecular formulae:
$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{Cl}_{2}$
i
$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2}$
ii
$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$ iii
14. The ability of the group in bold to function as a leaving group in each of the following:

$$
\begin{array}{ccc}
\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathbf{O T s} & \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathbf{F} & \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathbf{B r} \\
\mathbf{i} & \mathbf{i i} & \text { iii }
\end{array}
$$

10\% PART 2: LABORATORY

ANSWER ALL FIVE (5) OF THE QUESTIONS 15-19.

Questions 15-19 are based on the laboratory component of the course. In each case select ALL of the statements that are true. In some questions, MORE THAN ONE STATEMENT MAY BE CORRECT.

15. 1.09 g of p -aminophenol was reacted with 1.12 g of acetic anhydride, and 0.906 g of acetaminophen was obtained. What $\%$ yield of acetaminophen was obtained ?

A 92%
B 81%
C 72%
D 60%
E 55%
16. In the experiment about the reactivity of alcohols, which of the following statements are true?

A the Lucas test $\left(\mathrm{HCl} / \mathrm{ZnCl}_{2}\right)$ is an example of an SN 1 reaction.
B the tertiary alcohols were oxidised to ketones.
C bromine was used to detect the presence of an alkene.
D the relative reactivity towards dehydration was $3^{\circ}>2^{\circ}>1^{\circ}$.
\mathbf{E} the insoluble layer that forms in the Lucas test is the non-polar alkane.
17. In the experiment about the reactivity of alcohols, which of the following statements about the reagent 2,4-dinitrophenylhydrazine (2,4-DNP) are true ?

A it reacts with the alcohol giving a precipitate.
B $2,4-$ DNP is used as a colourless solution.
C if a carboxylic acid is presented, a yellow precipitate is formed.
D if an aldehyde or ketone is formed a yellow to red precipitate is formed.
E 2,4-DNP oxidises alcohols to carbonyl compounds.
18. Which of the following statements about the experiment "Reactivity in Substitution Reactions" are true ?

A acetone is an example of a polar, protic solvent.
B sodium chloride is insoluble in acetone.
C sodium iodide / acetone gives SN 1 reactivity
D crotyl chloride is 1-chloro-2-butene.
E the precipitates that form are the halide salts.
19. Which of the following statements about laboratory techniques are true ?

A boiling points are higher at sea-level than at higher altitude.
B a fractionating column should have a steady flow of water to cool it.
C a Büchner funnel is used for vacuum filtrations.
D charcoal can be used to remove water from organic solutions.
E a separatory funnel could be used to separate miscible liquids.

14\% PART 3: REACTIONS

ANSWER ANY SEVEN (7) OF QUESTIONS 20-27.

For each of questions $\mathbf{2 0 - 2 7}$ select either the major product or the starting material required in order to complete each of the reaction schemes
20.

21.

22.

A

B

D

E
23.

24.

A

B

C

D

E
25.

26.

27.

10\% PART 4: REAGENTS FOR REACTIONS

ANSWER ANY FIVE (5) OF QUESTIONS 28-33.

For each of questions 28-33 select the best reagent in order to complete each of the reaction schemes.
28.

A conc. $\mathrm{H}_{2} \mathrm{SO}_{4} /$ heat
D 1. $\mathrm{TsCl} / \mathrm{Et}_{3} \mathrm{~N}$
2. $\mathrm{KOH} / \mathrm{EtOH} /$ heat
B $\mathrm{KOH} / \mathrm{EtOH} /$ heat
E 1. $\mathrm{TsCl} / \mathrm{Et}_{3} \mathrm{~N}$
2. $\mathrm{KOtBu} / \mathrm{DMSO} /$ heat
29.

A conc. $\mathrm{H}_{2} \mathrm{SO}_{4} /$ heat
D 1. $\mathrm{TsCl} / \mathrm{Et}_{3} \mathrm{~N}$
2. $\mathrm{KOH} / \mathrm{EtOH} /$ heat
B $\mathrm{KOH} / \mathrm{EtOH} /$ heat
E 1. $\mathrm{TsCl} / \mathrm{Et}_{3} \mathrm{~N}$
2. KOtBu / DMSO / heat
30.

A $\mathrm{H}_{2} \mathrm{SO}_{4} /$ heat
D 1. $\mathrm{H}_{2} \mathrm{SO}_{4}$ / heat
2. H_{2} / catalyst
B NaOH
E 1. H_{2} / catalyst
2. $\mathrm{H}_{2} \mathrm{SO}_{4}$ / heat
31.

A NaOH
D 1. Na 2. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$
B Br_{2}
C $\mathrm{CH}_{3} \mathrm{Br}$
E 1. Na 2. $\mathrm{CH}_{3} \mathrm{Br}$
32.

A $\mathrm{Br}_{2} /$ heat
D $\mathrm{KBr} / \mathrm{DMSO}$
B HBr
E $\mathrm{NaBr} / \mathrm{H}_{2} \mathrm{SO}_{4}$
33.

A $\mathrm{Cl}_{2} /$ heat
D $\mathrm{NaCl} / \mathrm{DMSO}$
B HCl
C $\mathrm{PCl}_{3} / \mathrm{Et}_{3} \mathrm{~N}$
E $\mathrm{SOCl}_{2} / \mathrm{Et}_{3} \mathrm{~N}$

8\% PART 5: SPECTROSCOPY

ANSWER ANY FOUR (4) OF QUESTIONS 34-38.
For ANY FOUR (4) of questions $\mathbf{3 4 - 3 8}$ select the compound from the list provided that corresponds BEST with the spectroscopic data provided.
34. ${ }^{1} \mathrm{H}$ NMR : $\delta 3.3 \mathrm{ppm}$ (singlet, 3 H), 3.7ppm (singlet, 1 H)
35. ${ }^{1} \mathrm{H}$ NMR : $\delta 3.3 \mathrm{ppm}$ (singlet, 3 H), 3.7ppm (singlet, 2 H)
36. ${ }^{1} \mathrm{H}$ NMR : $\delta 2.1 \mathrm{ppm}$ (singlet, 3 H), 2.4ppm (singlet, 2H) IR : $1700 \mathrm{~cm}^{-1}$
37. ${ }^{1} \mathrm{H}$ NMR : $\delta 1.0 \mathrm{ppm}$ (doublet, 3 H) 3.3ppm (singlet, 6 H), 4.5ppm (quartet, 1 H)
38. ${ }^{1} \mathrm{H}$ NMR : $\delta 1.0 \mathrm{ppm}$ (doublet, 6 H) 1.8 ppm (broad singlet, exchangeable, 1 H), 3.7ppm (septet, 1H) $\mathrm{IR}=\sim 3400 \mathrm{~cm}^{-1}$ (broad)

A $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$
B $\mathrm{CH}_{3} \mathrm{C}$ H
OCH_{3}
C HOCH

D $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

AC

AD

AE

9\% PART 6: SYNTHESIS

DESIGN EFFICIENT SYNTHESES OF ANY THREE (3) of the following target molecules using any of the starting materials shown below.

WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED. DO NOT SHOW MECHANISMS.

TARGETS

1-methoxybutane trans-2-butene
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$

In addition you may use any solvents and /or inorganic reagents required.

9\% PART 7: MECHANISMS

WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED

ANSWER ANY THREE (3) OF THE QUESTIONS I to IV.

Draw curly arrow mechanisms to explain any three (3) of the following reactions / observations :
I.

II

III. Predict which of the following is more reactive towards methyl iodide and indicate why.

1

2
IV. Alcohols and ethers react with hydroiodic acid via a similar mechanistic path. Using this similarity, draw the mechanism to account for the transformation shown below:

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3} \xrightarrow{\text { excess } \mathrm{HI}} 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}
$$

10\% PART 8: SPECTROSCOPY

WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED

Show your workings as PARTIAL marks will be given.
From the data provided below, identify the structure of the "unknown" molecule.
Elemental analysis for C,H, N found only: $54.30 \% \mathrm{C}$ and $5.57 \% \mathrm{H}$

10\% PART 9: STRUCTURE DETERMINATION

WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED

Compound A, $\mathrm{C}_{6} \mathrm{H}_{10}$, (IR absorption $1650 \mathrm{~cm}^{-1}$) was tested with $\mathrm{Br}_{2} / \mathrm{CHCl}_{3}$ and gave a colourless solution. Careful reaction of \mathbf{A} using Br_{2} / uv light gave, $\mathbf{B}, \mathrm{C}_{6} \mathrm{H}_{9} \mathrm{Br}$ that also reacted with $\mathrm{Br}_{2} / \mathrm{CHCl}_{3}$ to give a colourless solution. \mathbf{B} was found to react quickly with both $\mathrm{NaI} /$ acetone and $\mathrm{AgNO}_{3} /$ aq. ethanol. When \mathbf{B} was reacted with aq. NaOH at room temperature, it very rapidly gave $\mathbf{C}, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$ (IR absorption $3400 \mathrm{~cm}^{-1}$ (broad), $\left.1650 \mathrm{~cm}^{-1}\right)$. C was found to react rapidly with the Lucas reagent $\left(\mathrm{HCl} / \mathrm{ZnCl}_{2}\right)$, and also with $\mathrm{Br}_{2} / \mathrm{CHCl}_{3}$ to give a colourless solution.

Subsequent oxidation of \mathbf{C} with a chromate reagent gave $\mathbf{D}, \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}$ (IR absorptions $1685 \mathrm{~cm}^{-1}, 1615 \mathrm{~cm}^{-1}$). D gave a red-orange precipitate when tested with 2,4dinitrophenylhydrazine (2,4-DNP). Reduction of \mathbf{D} with H_{2} / catalyst gave \mathbf{E} an isomer of \mathbf{C} (IR absorption $1715 \mathrm{~cm}^{-1}$). \mathbf{E} also gave a red-orange precipitate when tested with 2,4DNP.

Reduction of \mathbf{C} with H_{2} / catalyst gave $\mathbf{F}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ (IR absorption $3500 \mathrm{~cm}^{-1}$) that was oxidised with a chromate reagent to again yield \mathbf{E}.

Only \mathbf{B} and \mathbf{C} have chirality centers.

- Identify the compounds A-F (you only need to draw the structures)
- Match the following ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectral data to the appropriate compound A-F:

I 200, 151, 130, 38, 25, 23 ppm
II $127,25,23 \mathrm{ppm}$

- Explain why B is the major product from the reaction of A with Br_{2} / uv light

