UNIVERSITY OF CALGARY

FACULTY OF SCIENCE
FINAL EXAMINATION

CHEMISTRY 351

December 19th, 2006
Time: 3 Hours

READ ALL THE INSTRUCTIONS CAREFULLY

PLEASE WRITE YOUR NAME, STUDENT I.D. NUMBER ON BOTH YOUR EXAM ANSWER BOOKLET AND COMPUTER ANSWER SHEET.

The examination consists of Parts 1-9, each of which should be attempted. Note that some Parts provide you with a choice of questions, i.e. answer 4 out of 5 . These will be graded in order until the required number have been completed, regardless of whether they are right or wrong. Parts $1-5$ will be computer graded, and Parts $6-9$ are to be answered in the answer booklet provided. A periodic table with atomic numbers and atomic weights, and spectroscopic tables are appended to this examination paper.

Parts 1-5 consist of a series of multiple choice questions numbered $1-44$, which are to be answered on your computer answer sheet. Indicate your answer by blackening out the appropriate space, A, B, C, D or E on the answer sheet. Use a pencil only and not ink. In some cases it is required that you indicate multiple items for a complete and/or correct answer by blackening out more than one space. In some other cases more than five options are available and some of these also require more than one space to be blackened out. For an example, an option specified as $A B$ requires that you blacken out both space A and space B. Part marks may be awarded in some of the questions. Incorrect answers must be erased cleanly.

Molecular models are permitted during the exam; calculators are also permitted, but NOT programmable calculators.

Absolutely no other electronic devices are allowed.

20\%

PART 1 RELATIVE PROPERTIES

ANSWER ANY TEN (10) OF QUESTIONS 1 TO 12.
Arrange the items in questions 1-12 in DECREASING ORDER (i.e. greatest, most etc. first) with respect to the indicated property.

Use the following code to indicate your answers
A. \quad i $>$ ii $>$ iii
D. \quad ii $>$ iii $>$ i
B. \quad i $>\mathrm{iii}>\mathrm{ii}$
E. \quad iii $>\mathrm{i}>\mathrm{ii}$
C. \quad ii $>\mathrm{i}>\mathrm{iii}$
AB. iii > ii > i

1. The relative nucleophilicity of the following :

i

ii

iii
2. The relative stability of the following carbocations :

ii

iii
3. The stretching frequency in the infrared spectrum of the bonds indicated below:

i

ii

iii
4. The relative rates of reaction of each of the following with NaN_{3} in acetone:

i

ii

iii

Use the following code to indicate your answers

A. \quad i $>\mathrm{ii}>\mathrm{iii}$
D. \quad ii $>\mathrm{iii}>\mathrm{i}$
B. \quad i $>\mathrm{iii}>\mathrm{ii}$
E. $\quad \mathrm{iii}>\mathrm{i}>\mathrm{ii}$
C. $\quad \mathrm{ii}>\mathrm{i}>\mathrm{iii}$
AB. \quad iii $>\mathrm{ii}>\mathrm{i}$
5. The number of peaks expected in the normal proton decoupled ${ }^{13} \mathrm{C}$ NMR spectrum for each of the following:

i

ii

iii
6. The relative stability of following substituted cyclopentenes :

i

ii

iii
7. The ${ }^{1} \mathrm{H}$-NMR chemical shifts for the groups indicated in the following structure :

8. The relative rates of reaction of each of the following when heated with KOH in ethanol :
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$
i
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Br}$
ii

iii

Use the following code to indicate your answers

A. \quad i $>\mathrm{ii}>\mathrm{iii}$
D. \quad ii $>\mathrm{iii}>\mathrm{i}$
B. $\quad \mathrm{i}>\mathrm{iii}>\mathrm{ii}$
E. $\quad \mathrm{iii}>\mathrm{i}>\mathrm{ii}$
C. \quad ii $>\mathrm{i}>\mathrm{iii}$
AB. \quad iii $>$ ii $>$ i
9. The relative rates of reaction of each of the following when heated with $\mathrm{H}_{2} \mathrm{SO}_{4}$:

i

ii

iii
10. The relative amount of the conjugate base formed when each of the following reacts with of 1 mole equivalent of sodium methoxide:

i

ii

H-F
iii
11. The number of lines in the H -nmr coupling patterns for the H atoms indicated in each of the following :

i

ii

iii
12. The relative heats of combustion of the following alkenes (least exothermic to most exothermic):

i

ii

iii

PART 2: LABORATORY

ANSWER ALL SEVEN (7) OF THE QUESTIONS 13-19.

Questions 13-19 are based on the following scheme for the separation of an organic mixture from the laboratory component of the course.

In some questions, MORE THAN ONE ANSWER MAY BE REQUIRED FOR THE ANSWER TO BE COMPLETELY CORRECT.

A

B

C

D

E

Use the key provided above to answer questions 13, 14, 15, 17, 18
13. At the point indicated in the extraction scheme Qu 13, which of the species would be present in the solution?
14. At the point indicated in the extraction scheme $\mathbf{Q u} 14$, which of the species would be present in the organic layer?
15. At the point indicated in the extraction scheme Qu 15, which of the species would be present in the aqueous layer?
16. Based on the extraction scheme, which of the following is the best choice to neutralise the aqueous layer?
A. 15 mL of $5 \% \mathrm{NaOH}$
B. 20 mL of $10 \% \mathrm{NaOH}$
C. 45 mL of $5 \% \mathrm{NaOH}$
D. 15 mL of $5 \% \mathrm{HCl}$
E. 20 mL of $10 \% \mathrm{HCl}$
AB. 45 mL of $5 \% \mathrm{HCl}$
17. At the point indicated in the extraction scheme $\mathbf{Q u} 17$, which of the species would be present in the aqueous layer ?
18. At the point indicated in the extraction scheme $\mathbf{Q u} 18$, which of the species would be present in the organic layer?
19. Which of the following is an example of a suitable drying agent ?
A. charcoal
B. silver nitrate
C. sodium iodide
D. magnesium sulfate
E. sulfuric acid

AB . iodine

10\%
 PART 3: MOLECULAR PROPERTIES

ANSWER ALL TEN (10) of the questions 20-29.
In some questions, MORE THAN ONE ANSWER MAY BE REQUIRED FOR THE ANSWER TO BE COMPLETELY CORRECT.

Use the following information and structures A-E to answer questions 20-23

A

B

D

C

E
20. Which structure(s) has / have an sp^{3} hybridized nitrogen ?
21. Which structure(s) has / have a chirality center?
22. Which structure(s) is / are not an isomer of N, N-diethylaminoethanal ?
23. Which structure(s) is / are protonated to greater than 50% when reacted with one mole equivalent with $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$?

For each of the questions 24-29 about the amino acid TYROSINE (right), select the answer from those provided.

24. What is the index of hydrogen deficiency (IHD) of TYROSINE ?
A. 2
B. 3
C. 4
D. 5
E. 6
25. How many types of hydrogen are there in TYROSINE ?
A. 5
B. 6
C. 7
D. 8
E. 9
26. In TYROSINE, what are the hydridisations of C10, N11 and $\mathbf{O 1 3}$ respectively ?
A. $\mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{sp}^{2}$
B. $\mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{sp}^{3}$
C. $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
D. $s p^{3}, \mathrm{sp}^{3}, \mathrm{sp}^{2}$
E. $\mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{sp}^{2}$
AB. $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}^{2}$
27. In TYROSINE, what is the oxidation state of C6?
A. -3
B. -2
C. 1-
D. 0
E. +1
AB. +2
AC. +3
28. In TYROSINE, what is the oxidation state of N11?
A. -3
B. -1
C. 0
D. +1
E. +2
AB. +3
AC. +4
29. In TYROSINE, what is the approximate $p K_{a}$ for the loss of the first proton from $\mathbf{N} 11$?
A. 0
B. 5
C. 10
D. 20
E. 35

12\%
 PART 4: REACTIONS

ANSWER ANY EIGHT (8) OF QUESTIONS 30-38.
For each of questions 30-38 select the MISSING component (the starting material, the product or the reagents) required in order to BEST complete each of the reaction schemes.
30.

1) 2 equivalents NaNH_{2}
2) 1,6-ditosylhexane
?

A
$\mathrm{Br}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Br}$
B

$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
C

D
$\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
E
31.

A

B

C

D

E
32.

1)

2) $\mathrm{NaCN} / \mathrm{DMSO}$

A

B

C

D

33.

34.

B

C

E
35.

$\mathbf{A} \mathbf{x}=$ phenol $\quad \mathbf{y}=$ 1-bromo-2-methylbutane
$B \mathbf{x}=$ benzyl alcohol $\quad \mathbf{y}=1$-bromo-2-methylbutane
$\mathbf{C} \mathbf{x}=$ phenol $\quad \mathbf{y}=1$-bromo-3-methylbutane
D $\mathbf{x}=$ benzyl alcohol $\mathbf{y}=1$-bromo-3-methylbutane
E $\mathbf{x}=3$-methylbutanol $\mathbf{y}=$ bromobenzene
36.

A. 1. HBr 2. benzylmethanol
B. 1. HBr 2. phenol, pyridine
C. 1. HBr 2. diphenyl ether, pyridine
D. 1. HBr 2. benzyl bromide
E. 1. KO ${ }^{t} \mathrm{Bu}$ 2. benzyl bromide
37.

A. NaOH
B. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$, heat
C. $\mathrm{Na}, \mathrm{H}_{2} \mathrm{O}$, heat
D. 1. NaSH 2. TsCl , pyridine 3. $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$
E. 1. TsCl , pyridine 2. $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$
38.

A. 1. $\mathrm{PBr}_{3}, \mathrm{NEt}_{3}$ 2. excess NH_{3}
B. 1. N -bromosuccinimide 2. excess NH_{3}
C. 1. NaBr 2. excess NH_{3}
D. $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{NH}_{3}$, heat
E. $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{NaNH}_{2}$, heat

12\%

PART 5: SPECTROSCOPY

ANSWER ALL SIX (6) OF QUESTIONS 39-44.

For each of questions 39-44 select the compound from the list provided that corresponds BEST with the spectroscopic data provided. The following common abbreviations have been used $\mathbf{s}=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, $p=$ pentet, $m=$ multiplet, $d d=$ doublet of doublets, ex = exchangeable
39. ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta / p p m 1.1$ (t, 3H), 2.4 (q, 2H)
${ }^{13}$ C-NMR: $\delta / p p m 7.9,36,212$
IR: $1716 \mathrm{~cm}^{-1}$
40. ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta / p p m 1.0(\mathrm{t}, 3 \mathrm{H}), 1.7(\mathrm{~s}, 3 \mathrm{H}), 2.0(\mathrm{q}, 2 \mathrm{H}), 4.7(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13}$ C-NMR: $\delta / p p m 12.4,22.4,30.7,109,148$
IR: $1650 \mathrm{~cm}^{-1}$
41. ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta / p p m 1.2$ (d, 6H), 4.0 (dd, 1H), 4.1 (septet, 1H), $4.2 \mathrm{dd}, 1 \mathrm{H}$), 6.3 (dd, 1H)
${ }^{13}$ C-NMR: $\delta /$ ppm 22.0, 71.7, 88.1, 151
IR: 1635, 1202, $1122 \mathrm{~cm}^{-1}$
42. ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta / p p m ~ 0.9(\mathrm{t}, 3 \mathrm{H}), 1.4(\mathrm{~m}, 4 \mathrm{H}), 1.6(\mathrm{p}, 2 \mathrm{H}), 2.4\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O} \mathrm{ex}\right), 3.6(\mathrm{t}, 2 \mathrm{H})$
${ }^{13}$ C-NMR: $\delta / p p m 14.1,22.7,28.2,32.5,62.7$
IR: $3100-3500 \mathrm{~cm}^{-1}$
43. ${ }^{1} \mathrm{H}$-NMR: $\delta /$ ppm 1.22 (t, 3H), 2.6 (q, 2H) 7.1 (s, 2H)
${ }^{13}$ C-NMR: $\delta / \mathrm{ppm} 15.7,28.5,127.8,141.4$
IR: 1516, $1462 \mathrm{~cm}^{-1}$
44. ${ }^{1} \mathrm{H}$ NMR: $\delta / p p m 1.2$ (d, 6H), 2.0 (s, 3 H), 5.0 (septet, 1H)
${ }^{13}$ C-NMR: $\delta / p p m$ 21.3, 21.8, 67.5, 170
IR = 1738, $1248 \mathrm{~cm}^{-1}$

E

AB

BC

C

AC

BD

D

AD

BE

PART 6: SYNTHESIS

DESIGN EFFICIENT MULTISTEP SYNTHESES OF ANY TWO (2) of the following target molecules from the starting material indicated. In addition, you are allowed to use any other hydrocarbon with three or less carbon atoms and any solvent or inorganic reagent that does not become part of the carbon skeleton in the product.

WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED.
DO NOT SHOW MECHANISMS.
A

B

C

PART 7: MECHANISMS

WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED

ANSWER ANY THREE (3) OF THE QUESTIONS I to IV.

Use curly arrows to show the mechanism in order to explain any THREE (3) of the following reactions / observations :
I.

II

III. Predict the major product of this reaction and show the mechanism :

?
$\mathrm{EtOH} /$ heat
IV. Why do the following similar reactions give different alkene products ?

PART 8: SPECTROSCOPY
WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED. Show your workings as PARTIAL marks will be given.

From the data provided below, identify the structure of the "unknown" molecule.

Cont'd -->

12\%

PART 9: STRUCTURE DETERMINATION

WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED

A hydrocarbon $\mathbf{A}, \mathrm{C}_{6} \mathrm{H}_{14}$, was heated with bromine to give $\mathbf{B} \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Br}$ as the major product. \mathbf{B} was observed to react at a moderate rate with either aqueous ethanolic silver nitrate or with sodium iodide in acetone. When B was reacted with either $\mathrm{KOH} /$ $\mathrm{EtOH} /$ heat or KOtBu / DMSO / heat it gave the product $\mathrm{C}, \mathrm{C}_{6} \mathrm{H}_{12}$ (IR: 1650 cm^{-1}). Reduction of \mathbf{C} via catalytic hydrogenation $\left(\mathrm{H}_{2} / \mathrm{Pd}\right)$ gave the original hydrocarbon \mathbf{A} as the sole product.

When B was reacted with cold aq. NaOH solution the major product was \mathbf{D}, $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$ (IR : $3500 \mathrm{~cm}^{-1}$, broad).

When \mathbf{D} was reacted with $\mathrm{PBr}_{3} / E t_{3} \mathrm{~N}, \mathrm{~B}$ was obtained but when \mathbf{D} was treated with HBr the reaction gave E as the major product. E was observed to react rapidly with aqueous ethanolic silver nitrate but very slowly (if at all) with sodium iodide in acetone. E was found to be a constitutional isomer of B. E could also be obtained on reaction of 2,3-dimethylbutane with bromine / uv light.

When D was heated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, the major product was \mathbf{F}, a constitutional isomer of \mathbf{C}. \mathbf{F} was also formed as the major product of the reaction of \mathbf{E} with hot ethanolic KOH . Reduction of F via catalytic hydrogenation ($\mathrm{H}_{2} / \mathrm{Pd}$) gave a constitutional isomer of the original hydrocarbon \mathbf{A} as the sole product.

In a normal ${ }^{13} \mathrm{C} n m r$ spectroscopic analysis of the compounds, A-E each had 4 peaks, while F had only 2 peaks.

Of the compunds $\mathbf{A}-\mathbf{F}$, only \mathbf{B} and \mathbf{D} have chirality centers.

- Identify A-F (only structures are needed)

- Draw a structure showing the stereochemistry and give the complete name of one enantiomer of B.

SPECTROSCOPIC TABLES

${ }^{1} \mathrm{H}$ NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm
methyl methylene methyne
$\mathrm{CH}_{3}-\quad-\mathrm{CH}_{2}{ }^{-}$
0.9
1.6
2.1
2.2
2.3
2.7
3.1
3.3
1.4
2.3
2.4
2.5
2.7
3.3
3.4
3.4

CH
1.5
2.6
2.5
2.9
3.0
4.1
4.1
3.7
other

-OH	1-5
-NH	1-3
$\mathrm{C}=\mathrm{CH}$	2.5
$\stackrel{\prime}{c}=c^{\prime \prime}$	5.5

Ar-H 7.3

R-CI
R-O-
${ }^{13}$ C NMR

| $\mathrm{C}=\mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

${ }^{13} \mathrm{C}$ NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm

$\begin{gathered} -\mathrm{CH}_{3} \\ 0-30 \end{gathered}$	$\underset{10-50}{\mathrm{CH}_{2}}$		
$\begin{gathered} -\mathrm{C} \equiv \mathrm{C}- \\ 65-90 \end{gathered}$			
110-170			

INFRA-RED GROUP ABSORPTION FREQUENCIES

	TYPE OF VIBRATION	FREQUENCY $\left(\mathrm{cm}^{-1}\right)$	WAVELENGTH (μ)	INTENSITY (1)
C-H	Alkanes (stretch)	3000-2850	3.33-3.51	s
	- CH_{3} (bend)	1450 and 1375	6.90 and 7.27	m
	$-_{-} \mathrm{CH}_{2}{ }^{-}$(bend)	1465	6.83	m
	Alkenes (stretch)	3100-3000	3.23-3.33	m
	(bend)	1700-1000	5.88-10.0	s
	Aromatics (stretch)	3150-3050	3.17-3.28	s
	(out-of-plane bend)	1000-700	10.0-14.3	s
	Alkyne (stretch)	ca. 3300	ca.3.03	s
	Aldehyde	2900-2800	3.45-3.57	w
		2800-2700	3.57-3.70	w
C-C	Alkane not usually useful			
$\mathrm{C}=\mathrm{C}$	Alkene	1680-1600	5.95-6.25	m-w
	Aromatic	1600-1400	6.25-7.14	m-w
$\mathrm{C}=\mathrm{C}$	Alkyne	2250-2100	4.44-4.76	m-w
$\mathrm{C}=0$	Aldehyde	1740-1720	5.75-5.81	s
	Ketone	1725-1705	5.80-5.87	s
	Carboxylic acid	1725-1700	5.80-5.88	s
	Ester	1750-1730	5.71-5.78	s
	Amide	1700-1640	5.88-6.10	s
	Anhydride	ca. 1810	ca. 5.52	s
		ca. 1760	ca. 5.68	s
C-O	Alcohols, Ethers, Esters,			
	Carboxylic acids	1300-1000	7.69-10.0	s
O-H	Alcohols, Phenols			
	Free	3650-3600	2.74-2.78	m
	H-Bonded	3400-3200	2.94-3.12	m
	Carboxylic acids (2)	3300-2500	3.03-4.00	m
N-H	Primary and secondary amines	ca. 3500	ca. 2.86	m
$\mathrm{C} \equiv \mathrm{N}$	Nitriles 2260-2240	4.42-4.46	m	
$\mathrm{N}=\mathrm{O}$	Nitro (R-NO2)	1600-1500	6.25-6.67	s
		1400-1300	7.14-7.69	s
C-X	Fluoride	1400-1000	7.14-10.0	s
	Chloride	800-600	12.5-16.7	s
	Bromide, lodide	<600	>16.7	s

(1) $s=$ strong, $m=$ medium and $w=$ weak
(2) note that the -OH absorption of solid carboxylic acids which run as a nujol mull can be difficult to see as they maybe very broad

PERIODIC TABLE

1																	$\begin{aligned} & 18 \\ & 8 \mathrm{~A} \end{aligned}$
1A																	
${ }^{1}$	2											13	14	15	16	17	${ }^{2}$
H 1.008	2A											3A	4A	5A	6A	7 A	He
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	CI	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	${ }^{21}$	22	${ }^{23}$	${ }^{24}$	25	${ }^{26}$	27	28	${ }^{29}$	30	31	32	33	34	35	36
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	${ }^{41}$	42	${ }^{43}$	44	45	46	47	48	49	50	51	52	${ }^{53}$	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	12.9	131.3
55	56	57*	72	73	74	75	76	77	78	79	80	81	82	${ }^{83}$	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89**	104	105	106	107	108	109	110	111							
Fr	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt	Uun	Uuu							
(223)	226.0	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)							

