UNIVERSITY OF CALGARY

FACULTY OF SCIENCE
FINAL EXAMINATION
CHEMISTRY 351
December 2009
Time: 3 Hours

READ ALL THE INSTRUCTIONS CAREFULLY

PLEASE WRITE YOUR NAME, STUDENT I.D. NUMBER ON BOTH YOUR EXAM ANSWER BOOKLET AND COMPUTER ANSWER SHEET.

The examination consists of Parts 1-8, each of which should be attempted. Note that some Parts provide you with a choice of questions, i.e. answer 4 out of 5 . These will be graded in numerical order until the required number have been completed, regardless of whether they are right or wrong. Parts 1-4 will be computer graded, and Parts 5-8 are to be answered in the answer booklet provided. A periodic table with atomic numbers and atomic weights, and spectroscopic tables are appended to this examination paper.

Parts 1-5 consist of a series of multiple choice questions numbered $1-39$, which are to be answered on your computer answer sheet. Indicate your answer by blackening out the appropriate space, A, B, C, D or E on the answer sheet. Use a pencil only and not ink. In some cases it is required that you indicate multiple items for a complete and/or correct answer by blackening out more than one space. In some other cases more than five options are available and some of these also require more than one space to be blackened out. For an example, an option specified as AB requires that you blacken out both space A and space B. Part marks may be awarded in some of the questions. Incorrect answers must be erased cleanly.

Molecular models are permitted during the exam; calculators are also permitted, but NOT programmable calculators.

Absolutely no other electronic devices are allowed.

20\%

PART 1 RELATIVE PROPERTIES

ANSWER ANY TEN (10) OF QUESTIONS 1 TO 12.
Arrange the items in questions 1-12 in DECREASING ORDER (i.e. greatest, most etc. first) with respect to the indicated property.

Use the following code to indicate your answers.
A. \quad i $>$ ii $>$ iii
D. \quad ii $>\mathrm{iii}>\mathrm{i}$
B. \quad i $>\mathrm{iii}>\mathrm{ii}$
C. \quad ii $>\mathrm{i}>\mathrm{iii}$
E. \quad iii $>$ i $>$ ii
AB. \quad iii $>\mathbf{i i}>\mathbf{i}$

1. The relative acidity of the following:

i

ii

iii
2. The number of constitutionally isomeric monochlorination products from the reaction of one molar equivalent of Cl_{2} / uv light with each of the following
i 2-methylbutane
ii 2,2-dimethylpropane
iii n-pentane
3. The heats of combustion of the following alkenes (most exothermic to least exothermic):

i

ii

iii
4. The rate of reaction of each of the following with Nal/acetone:

i

ii

iii

Use the following code to indicate your answers.
A. \quad i $>\mathrm{ii}>\mathrm{iii}$
D. \quad ii $>\mathrm{iii}>\mathrm{i}$
B. \quad i $>\mathrm{iii}>\mathrm{ii}$
C. \quad ii $>\mathrm{i}>\mathrm{iii}$
E. $\quad \mathrm{iii}>\mathrm{i}>\mathrm{ii}$
AB. \quad iii $>\mathrm{ii}>\mathrm{i}$
5. The relative amount of the conjugate base of 2-propanone formed by the reaction of 1 mole equivalent of each of the following:

6. The relative acidity of the indicated atoms in the following structure:

7. The relative stability of the following radicals:

i

ii

iii
8. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ chemical shifts for the carbon atoms indicated in each of the following structures:

i

ii

Use the following code to indicate your answers.
A. \quad i $>$ ii $>$ iii
D. \quad ii $>\mathrm{iii}>\mathrm{i}$
B. $\quad \mathrm{i}>\mathrm{iii}>\mathrm{ii}$
E. $\quad \mathrm{iii}>\mathrm{i}>\mathrm{ii}$
C. \quad ii $>\mathrm{i}>\mathrm{iii}$
AB. \quad iii $>\mathrm{ii}>\mathrm{i}$
9. The number of possible alkene isomers formed by reacting the following with $\mathrm{KOH} / \mathrm{EtOH}$ and heat:

i

ii

iii
10. The relative energies of the conformations shown below:

iii
11. The relative leaving group ability of the group in bold in each of the following:

$$
\begin{array}{ccc}
\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OTs} & \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Cl} & \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH} \\
\mathbf{i} & \mathbf{i i} & \mathbf{i i i}
\end{array}
$$

12. The relative bond lengths of the bonds indicated:

15\% PART 2: MOLECULAR PROPERTIES

ANSWER ALL TEN (10) of the questions 13-22
Use the structures below to answer questions 13-17

A

B

D

AB

13. Which structure has the most acidic hydrogen atom ?
14. When heated with $\mathrm{H}_{2} \mathrm{SO}_{4}$ which structure will eliminate the fastest?
15. When reacted with Nal in acetone, which structure will substitute the fastest?
16. When reacted with NaOEt , which structure will eliminate the fastest ?
17. When reacted under the $\mathrm{AgNO}_{3} / \mathrm{EtOH}$ conditions, which structure will substitute the fastest?

Questions 18-22 refer to the structure of commercial Penicilin G - Procaine salt:

18. What is the IHD of Penicillin G - Procaine salt ?
A. 11
B. 12
C. 13
D. 14
E. 15
19. For the Procaine portion of the salt, how many carbon signals do you expect in the ${ }^{13} \mathrm{C}$ NMR spectrum ?
A. 9
B. 10
C. 11
D. 12
E. 13
20. In Penicillin G - Procaine salt, which of the following protons has the lowest chemical shift (δ) in the ${ }^{1} \mathrm{H}$ NMR spectrum ?
A. $\mathrm{H}-\mathrm{N} 1$
B. $\mathrm{H}-\mathrm{C} 4$
C. $\mathrm{H}-\mathrm{C} 3$
D. $\mathrm{H}-\mathrm{N} 6$
E. $\mathrm{H}-\mathrm{C} 9$

21. Which of the following best describes the orbitals of the three lone pairs on $\mathbf{O 5}$ occupy?
A. $\mathrm{sp}^{3}, \mathrm{sp}^{3}, \mathrm{sp}^{3}$
B. $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}^{2}$
C. p, p, p
D. $p, s p^{2}, s p^{2}$
E. $p, p, s p^{2}$
22. What is the absolute configuration of C3?
A. R
B. S
C. E
D. Z
E. cis

16\% PART 3: REACTIONS

ANSWER ANY EIGHT (8) OF QUESTIONS 23-31.
For each of questions 23-31 select the MISSING component (the best starting material, the major product or the best reagents) required in order to BEST complete each of the reaction schemes.
23.

24.

A $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat
D 1. PBr_{3}
2, tBuOK, DMSO, heat
B KOtBu, DMSO, heat
E 1. $\mathrm{SOCl}_{2}, \mathrm{NEt}_{3}$
2. KOH , cold
25.

26.

27.

B

28. Select the starting material that reacts at the fastest rate to give the indicated product:

29.

A 1. Thionyl chloride / $\mathrm{Et}_{3} \mathrm{~N}$
C 1. Br_{2}, uv light
2. NaOEt / EtOH / heat
2. $\mathrm{H}_{2} \mathrm{O}$, heat
3. PBr_{3}
E 1. Br_{2}, uv light
2. KOBu-t / t-BuOH / heat
3. Br_{2}
D 1. conc. $\mathrm{H}_{2} \mathrm{SO}_{4} /$ heat
2. Br_{2}, uv light
30.

A 1. HBr
2. $\mathrm{NaOEt} / \mathrm{EtOH} /$ heat
C 1. NBS, uv light 2. $\mathrm{KOH} / \mathrm{EtOH} /$ heat
E 1. PBr_{3}
2. $\mathrm{KOH} / \mathrm{EtOH} /$ heat
B 1. TsCl/Py
2. $\mathrm{KOH} / \mathrm{EtOH} /$ heat
D 1. $\mathrm{SOCl}_{2} / \mathrm{NEt}_{3}$
2. KOH , cold
31.

1) $\mathrm{SOCl}_{2}, \mathrm{NEt}_{3}$
2) $\mathrm{AgNO}_{3}, \mathrm{EtOH}$

A

B

C

12\% PART 4: CONFORMATIONAL ANALYSIS
ANSWER ALL of the questions 32-39.
32. What is the torsional angle between the two bonds involving chlorine atoms in molecule shown below?

A 0°
D 109.5°
B 60°
E 120°
C 90°
AB 180°
33. What is the $\mathbf{C l}-\mathbf{C - C l}$ bond angle in the molecule that is represented by the Newman projection shown below?

A 0°
D 109.5°
B 60°
E 120°
C 90°
AB 180°
34. Which of the following diagrams represents the most stable conformation of trans-1,3-dimethylcyclohexane?

A

B

C

D

E
35. Which of the following terms best describes the relative position of the two highlighted bonds in the conformation of methylcyclohexane shown below?
A eclipsed
D gauche
B staggered
E syn
C anti
AB trans
36. Which of the following terms best describes the relationship between the two molecules shown below?

A constitutional isomers
B identical
C conformational isomers
D enantiomers
E geometric isomers
37. Which of the following conformations of 2-methylbutane is the most stable?

A

B

38. Which of the following is the highest energy conformation of chlorocyclohexane ?

A

B

C

D

E
39. Which of the following structures has the lowest energy ?

A

B

C

D

E

8\% PART 5: SYNTHESIS

DESIGN EFFICIENT SYNTHESES OF ANY TWO (2) of the following target molecules from the starting material indicated. In addition, you are allowed to use any other hydrocarbon with three or less carbon atoms and any solvent or inorganic reagent that does not become part of the carbon skeleton in the product.

WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED.
DO NOT SHOW MECHANISMS.
A

\longrightarrow

B

C

D

9\% PART 6: MECHANISMS

WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED
Use curly arrows to show the mechanism required in order to explain ANY TWO of the following:

A Draw ALL three elimination products from the following reaction. Identify the major product and draw the reaction mechanism to explain your answer.

B Draw the reaction mechanism for the following reaction:

C Draw the reaction mechanism for the following reaction:

10\%
 PART 7: SPECTROSCOPY

WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED. Show your workings as PARTIAL marks will be given.

From the spectral data provided below, identify the structure of the "unknown" molecule.

12\%

PART 8: STRUCTURE DETERMINATION

WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED

Molecule \mathbf{A} is an acyclic, achiral monobromoalkane containing five carbons. When \mathbf{A} is heated with $\mathrm{NaOEt}, \mathbf{B}$ results as the minor product, and \mathbf{C} as the major product. Molecule \mathbf{D} is chiral and a constitutional isomer of \mathbf{A}. When \mathbf{D} is heated with potassium tert-butoxide, \mathbf{E} formed as the major product and \mathbf{C} is the minor product. Molecules \mathbf{B}, \mathbf{C}, and \mathbf{E} are constitutional isomers of each other, and when hydrogenated in the presence of palladium on charcoal, they all gave the same alkane. Both \mathbf{A} and \mathbf{D} reacted with water to give compound \mathbf{F} whose ${ }^{1} \mathrm{H}$ NMR spectra is given below. When \mathbf{B} is reacted with N -bromosuccinimde under UV irradiation, \mathbf{G} was obtained as the major product, but when \mathbf{E} is treated with N -bromosuccinimide under the same conditions, \mathbf{H} is obtained as the major product. \mathbf{G} and \mathbf{H} are constitutional isomer of each other with a molecular formula of $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{Br}$.

1. Identify A-H (only structures are needed)
2. Draw a pair of enantiomers that correspond to the molecular formula $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{Br}$ and give an IUPAC names for each one of them.
3. Draw a pair of geometric isomers that correspond to the molecular formula $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{Br}$ and give an IUPAC names for each of them.

SPECTROSCOPIC TABLES

${ }^{1}$ H NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm
methyl methylene methyne
$\mathrm{CH}_{3}-\quad-\mathrm{CH}_{2}{ }^{-}$
1.4
2.3
2.4
2.5
2.7
3.3
3.4
3.4

CH
1.5
2.6
2.5
2.9
3.0
4.1
4.1
3.7
other

	0.9	1.4	1.5	-OH	1-5
				-NH	1-3
	1.6	2.3	2.6	$\mathrm{C} \equiv \mathrm{CH}$	2.5
	2.1	2.4	2.5		5.5 7.3
$R-N^{\prime}$	2.2	2.5	2.9		10
R-Ar	2.3	2.7	3.0	0	
$\mathrm{R}-\mathrm{Br}$	2.7	3.3	4.1		9-12
R-Cl	3.1	3.4	4.1		
R-O-	3.3	3.4	3.7		

${ }^{13}$ C NMR

$\mathrm{C}=\mathrm{C}$	C $=\mathrm{C}$	C-C

${ }^{13} \mathrm{C}$ NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm

$\begin{gathered} -\mathrm{CH}_{3} \\ 0-30 \end{gathered}$	$\underset{10-50}{\stackrel{\mathrm{CH}_{2}}{2}}$		
$\begin{gathered} -\mathrm{C} \equiv \mathrm{C}- \\ 65-90 \end{gathered}$			
110-170			

INFRA-RED GROUP ABSORPTION FREQUENCIES

	TYPE OF VIBRATION	FREQUENCY $\left(\mathrm{cm}^{-1}\right)$	WAVELENGTH (μ)	INTENSITY (1)
C-H	Alkanes (stretch)	3000-2850	3.33-3.51	s
	$-\mathrm{CH}_{3}$ (bend)	1450 and 1375	6.90 and 7.27	m
	- $\mathrm{CH}_{2}{ }^{-}$(bend)	1465	6.83	m
	Alkenes (stretch)	3100-3000	3.23-3.33	m
	(bend)	1700-1000	5.88-10.0	s
	Aromatics (stretch)	3150-3050	3.17-3.28	s
	(out-of-plane bend)	1000-700	10.0-14.3	s
	Alkyne (stretch)	ca. 3300	ca.3.03	s
	Aldehyde	2900-2800	3.45-3.57	w
		2800-2700	3.57-3.70	w
C-C	Alkane not usually useful			
$\mathrm{C}=\mathrm{C}$	Alkene	1680-1600	5.95-6.25	m-w
	Aromatic	1600-1400	6.25-7.14	m-w
$\mathrm{C}=\mathrm{C}$	Alkyne	2250-2100	4.44-4.76	m-w
$\mathrm{C}=0$	Aldehyde	1740-1720	5.75-5.81	s
	Ketone	1725-1705	5.80-5.87	s
	Carboxylic acid	1725-1700	5.80-5.88	s
	Ester	1750-1730	5.71-5.78	s
	Amide	1700-1640	5.88-6.10	s
	Anhydride	ca. 1810	ca. 5.52	s
		ca. 1760	ca. 5.68	s
$\mathrm{C}-\mathrm{O}$	Alcohols, Ethers, Esters,			
	Carboxylic acids	1300-1000	7.69-10.0	s
O-H	Alcohols, Phenols			
	Free	3650-3600	2.74-2.78	m
	H-Bonded	3400-3200	2.94-3.12	m
	Carboxylic acids (2)	3300-2500	3.03-4.00	m
N-H	Primary and secondary amines	ca. 3500	ca. 2.86	m
$\mathrm{C} \equiv \mathrm{N}$	Nitriles 2260-2240	4.42-4.46	m	
$\mathrm{N}=\mathrm{O}$	Nitro ($\mathrm{R}-\mathrm{NO}_{2}$)	1600-1500	6.25-6.67	s
		1400-1300	7.14-7.69	s
C-X	Fluoride	1400-1000	7.14-10.0	s
	Chloride	800-600	12.5-16.7	s
	Bromide, lodide	<600	>16.7	s

(1) $s=$ strong, $m=$ medium and $w=$ weak
(2) note that the -OH absorption of solid carboxylic acids which run as a nujol mull can be difficult to see as they maybe very broad

PERIODIC TABLE

1																	$\begin{aligned} & 18 \\ & 8 \mathrm{~A} \end{aligned}$
1A																	
${ }^{1}$	2											13	14	15	16	17	${ }^{2}$
H 1.008	2A											3A	4A	5A	6A	7 A	He
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	CI	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	${ }^{21}$	22	${ }^{23}$	${ }^{24}$	25	${ }^{26}$	27	28	${ }^{29}$	30	31	32	33	34	35	36
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	${ }^{41}$	42	${ }^{43}$	44	45	46	47	48	49	50	51	52	${ }^{53}$	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	12.9	131.3
55	56	57*	72	73	74	75	76	77	78	79	80	81	82	${ }^{83}$	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89**	104	105	106	107	108	109	110	111							
Fr	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt	Uun	Uuu							
(223)	226.0	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)							

Lanthanides *	58	59	${ }^{60}$	${ }^{61}$	62	63	${ }^{64}$	${ }^{65}$	${ }^{66}$	67	${ }^{68}$	69	${ }^{70}$	1
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	40.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168	173.0	175.0
Actinides **	90	91	92	93	94	95	96	97	98	99	100	101	102	${ }^{03}$
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

