THE UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

MIDTERM EXAMINATION

CHEMISTRY 351

November 4th, 2009

Time: 2 Hours

READ THE INSTRUCTIONS CAREFULLY

PLEASE WRITE YOUR NAME, STUDENT I.D. NUMBER ON <u>BOTH</u> YOUR ANSWER BOOKLET AND COMPUTER ANSWER SHEET.

The examination consists of Parts 1 - 7, each of which should be attempted. Note that some parts provide you with a choice of questions, *e.g.* answer 4 out of 5. These will be graded in numerical order until the required number have been graded, regardless of whether they are right or wrong. Parts 1 - 4 will be computer graded, and only Parts 5, 6, and 7 are to be answered in the booklet provided. A periodic table with atomic numbers and atomic weights and spectroscopic data tables are located inside the back cover.

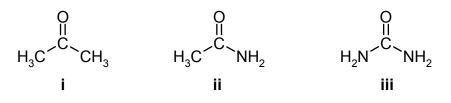
Parts 1 - 4 consist of a series of multiple choice questions numbered 1 - 31 which are to be answered on your computer answer sheet. Indicate your answer by blackening out the appropriate space, A, B, C, D or E on the answer sheet. Use a pencil only and <u>not</u> <u>ink</u>. In some cases it is required that you indicate <u>multiple</u> items for a complete and/or correct answer by blackening out more than one space. In some other cases more than five options are available and some of these also require more than one space to be blackened out. For an example, an option specified as AB requires that you blacken out <u>both</u> space A and space B. Part marks may be awarded in some of the questions. Incorrect answers must be erased <u>cleanly</u>.

Molecular models are permitted during the exam; calculators are also permitted, <u>but</u> <u>NOT programmable calculators</u>.

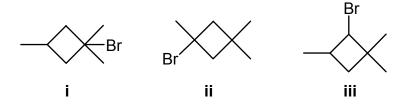
Absolutely no other electronic devices are allowed.

PLEASE WRITE THE NUMBER OF YOUR LABORATORY SECTION AT THE TOP OF THE FRONT COVER ON YOUR ANSWER BOOKLET

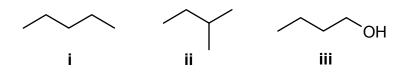
18% PART 1: RELATIVE PROPERTIES


ANSWER ANY NINE (9) of questions 1-10 (2 marks per question)

Arrange the items in **questions 1-10** in **DECREASING ORDER** (*i.e.* greatest, most etc. **first**) with respect to the indicated property.

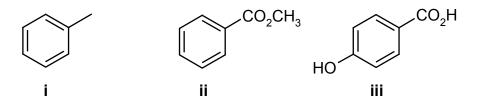

Use the following code to indicate your answers.

Α.	i > ii > iii	D.	ii > iii > i
В.	i > iii > ii	Ε.	iii > i > ii
C.	ii > i > iii	AB.	iii > ii > i

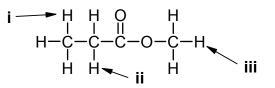

1. The relative strengths of the **C=O** bonds in each of the following molecules:

2. The relative yields of the following products from the light catalysed reaction of Br₂ with 1,1,3-trimethylcyclobutane:

3. The boiling points of the following:


Use the following code to indicate your answers.

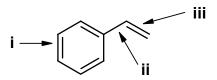
Α.	i > ii > iii	D.	ii > iii > i
В.	i > iii > ii	Ε.	iii > i > ii
C.	ii > i > iii	AB.	iii > ii > i


4. The number of ¹³C-NMR peaks for the following:

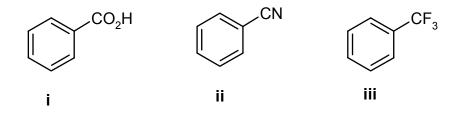
Pentane	Cyclohexane	2,2-Dimethylpropane
i	ii	iii

5. The relative Rf values in normal thin layer chromatography of:

6. The ¹H-NMR chemical shifts (δ in ppm) of the indicated hydrogens:


7. The formal charge associated with the following structures (most positive to most negative):

Use the following code to indicate your answers.

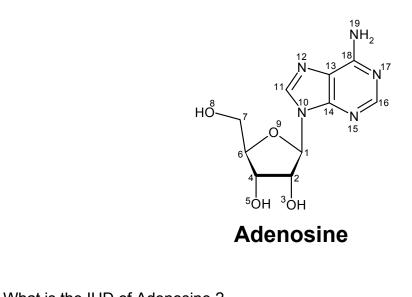

8. The relative importance of the following resonance contributors to HN₃ (all required charges are shown):

$$H - N \equiv N - N^{2^{-}} H - N \equiv N \equiv N H - N = N^{+} = N^{-}$$

i ii iii

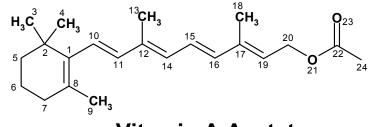
9. The relative length of the indicated bond:

10. The relative IHD (units of unsaturation) of the following molecules:



. .

18% PART 2: MOLECULAR PROPERTIES


ANSWER ALL of the questions 11 - 19.

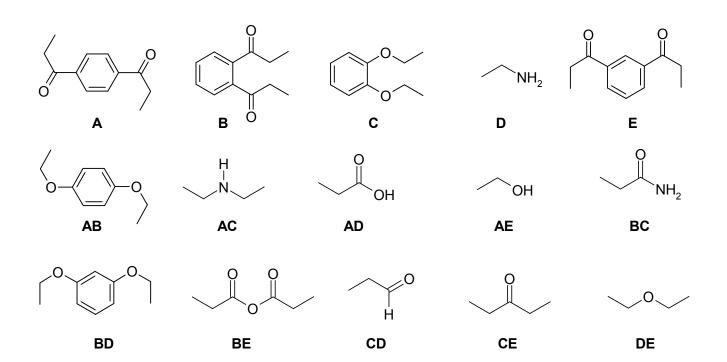
Adenosine is a key nucleoside used to form RNA. Use the structure below to answer questions **11** - **14** by select answer(s) from those provided. In some cases more than one answer may be correct; all correct answers must be selected for full marks.

11.	What is the IHE	O of Adenosine ?			
	A. 4	B. 5	C. 6	D. 7	E. 8
		-			-
12.	What is the hyt	pridizations of O9	/ N12 respect	ively?	
	A. sp ³ ,sp ³	B. sp ³ ,sp ²	C. sp,sp	D. sp ² ,sp	E. sp ³ ,sp
13	What is the clo	sest value to the	08-C7-C6 bor	nd angle ?	
				•	L 1100
	A. 90	B. 180°	C. 109.5	D. 120	E. 112
14.		ne following bond um of Adenosine	-	st stretching freq	uency (cm ⁻¹) in the
	A. C7-O8	B. O8-H	C. C6-H	D. C11-N12	E. C11-H

Use the structure of Vitamin A Acetate to answer questions **15 - 19** by select answer(s) from those provided. If in some cases more than one answer may be correct, then all correct answers must be selected for full marks.

Vitamin A Acetate

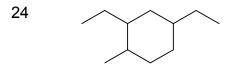
- 15. Which C-H bond is the weakest among those listed below ? A. C9-H B. C3-H C. C7-H D. C24-H E. C5-H
- 16. Among the bonds listed below, which one is the longest ?


 A. C2-C3
 B. C8-C9
 C. C22-C24
 D. C24-H
 E. C14-C15
- 17. For O21, which orbitals do the two lone pairs of **O21** occupy ? A. sp^2 / sp^2 B. sp^3 / sp^3 C. p / p D. p / sp^2 E. p / sp^3
- 18. What functional groups are found in vitamin A acetate ?A. Ether B. aldehyde C. alkene D. ester E. ketone
- 19. What term(s) can be used to best describe C20 ?A. primary B. secondary C. tertiary D. allylic E. benzylic

10% PART 3: SPECTROSCOPY

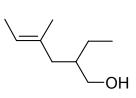
ANSWER ALL FOUR (4) OF QUESTIONS 20 - 23.

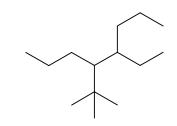
For each of questions 20-23 select the compound from the list provided that corresponds BEST with the spectroscopic data provided. The following common abbreviations have been used s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet


- ¹H NMR : δ/ppm 1.2 (t, 3H), 2.4 (q, 2H)
 ¹³C-NMR: δ/ppm 8, 29, 170
 IR : 1756, 1822 cm⁻¹
- ¹H NMR : δ/ppm 1.1 (t, 3H), 2.4 (q, 2H)
 ¹³C-NMR: δ/ppm 8, 35, 212
 IR : 1716 cm⁻¹
- 22. ¹H NMR : δ /ppm 1.2 (t, 3H), 2.2 (q, 2H), 6.2 (s, 2H) ¹³C-NMR: δ /ppm 10, 29, 178 IR : 3363, 3192, 1650 cm⁻¹
- ¹H NMR : δ/ppm 1.4 (t, 3H), 4.1 (q, 2H), 6.9 (m, 2H)
 ¹³C-NMR: δ/ppm 15, 65,114, 121,149
 IR : 1266 cm⁻¹

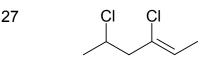
14% PART 4: NOMENCLATURE

ANSWER ANY SEVEN (7) of the questions 24-31 (2 marks per question).

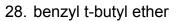

For each of questions 24 to 27, select the correct name for the compound shown:

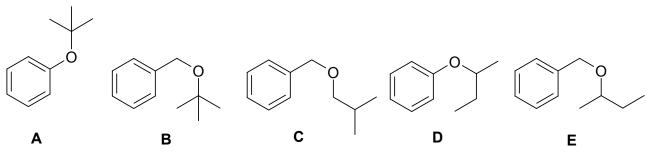

- A. 2,4-diethyl-1-methylcyclohexane
 B. 1,3-diethyl-4-methylcyclohexane
 C. 1-methyl-2,4-diethylcyclohexane
 D. 4-methyl-1,3-diethylcyclohexane
- E. 1-methyl-2,4-diethylbenzene

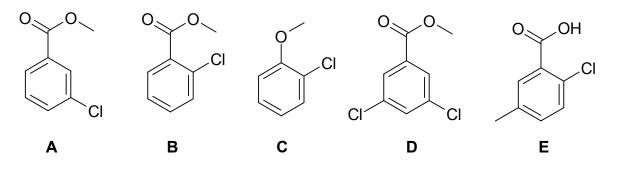
25


26

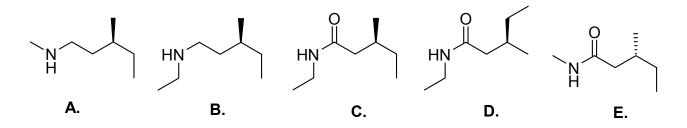
- **A**. (Z)-2-ethyl-4-methylhex-4-enol
- B. (Z)-5-ethyl-3-methylhex-2-en-6-ol
- C. (E)-5-ethyl-3-methylhex-2-en-6-ol
- D. (E)-3-methanol-5-methylhept-5-ene
- E. (E)-2-ethyl-4-methylhex-4-en-1-ol

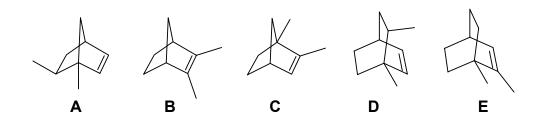



- A. 4-ethyl-5-isopropyloctane
- B. 4-(1,1-dimethylethyl)-5-ethyloctane
- C. 4-(1,1-dimethylethyl)-5-propylheptane
- D. 5-(1,1-dimethylethyl)-4-propylheptane
- **E**. 4-isobutyl-5-propylheptane


- A. (Z)-3,5-dichlorohex-2-ene
- B. (E)-3,5-dichlorohex-2-ene
- C. (Z)-2,4-dichlorohex-4-ene
- D. (E)-2,4-dichlorohex-4-ene
- E. (E)-3,5-dichlorohex-2-yne

For each of questions 28 to 31, select the correct structure for the name provided:




29. methyl meta-chlorobenzoate :

30. (S)-(N)-ethyl-3-methylpentanamide :

31. 1,2-dimethylbicyclo[2.2.1]hept-2-ene:

13% PART 5: STRUCTURE DETERMINATION

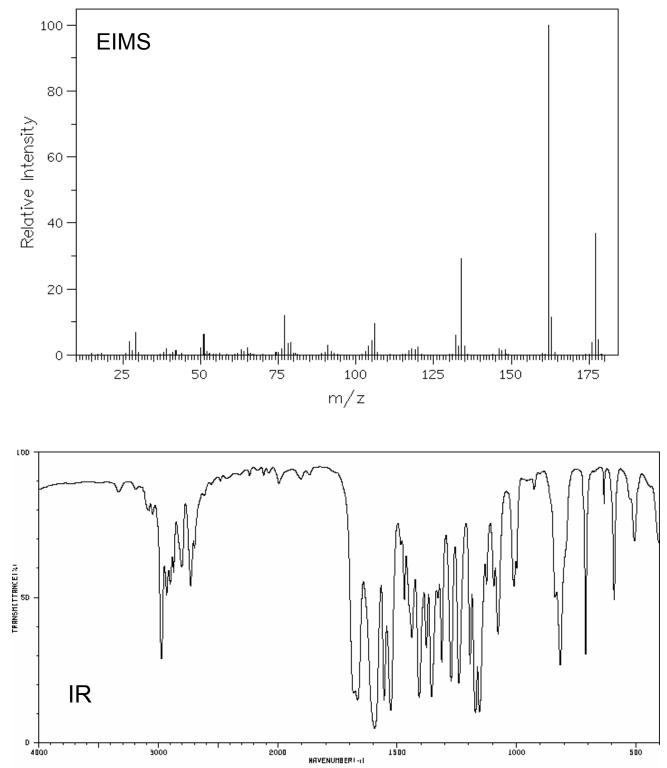
Write your answer in the booklet provided. For FULL marks you MUST show your work. PARTIAL marks will be awarded.

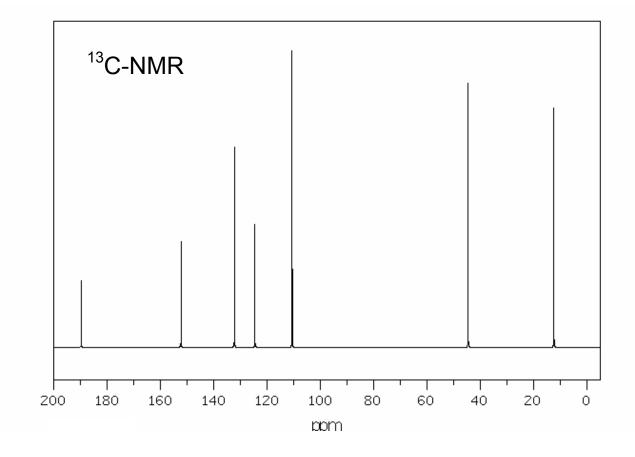
Two unknown samples (**A** and **B**) were sent to a laboratory for analyses. Both samples were found to have a molecular ion peak at m/z 70 by electron impact ionization mass spectrometry. Combustion analyses revealed that both samples had similar elemental contents: C: 85.63%, H: 14.37%. The ¹H and ¹³C NMR spectra indicated that each sample consisted of an acyclic compound: Compound **A** had 5 sets of ¹H signals and 4 carbon signals, while compound **B** had 4 sets of ¹H signals and 5 carbon signals.

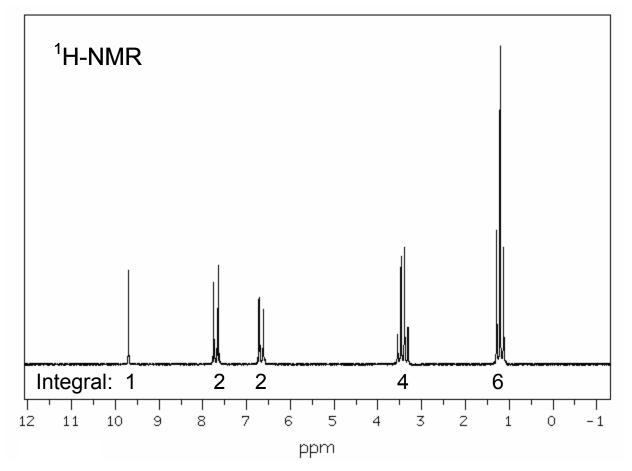
- (a) What are the molecular formulas of **A** and **B**?
- (b) What is the IHD of **A** and **B**?
- (c) Propose structures for **A** and **B** that fit with the information given above.
- (d) Further analyses determined that compound **A** had heats of formation ΔH_{f}° , **A** (liquid) = -15.5 kcal mol⁻¹, and compound **B** had heats of combustion ΔH_{c}° , **B** (liquid) = -792 kcal mol⁻¹. Given the heats of combustion data:

 $\Delta H_{\rm C}^{\circ}$, C (graphite) = -93.9 kcal mol⁻¹

 ΔH_{c}° , H₂ (gas) = -68.4 kcal mol⁻¹


Calculate ΔH_{c}° for compound **A**, and ΔH_{f}° for compound **B**.


(e) Using your answer from part (d), state which molecule is more stable, **A** or **B** ? Briefly explain your choice.

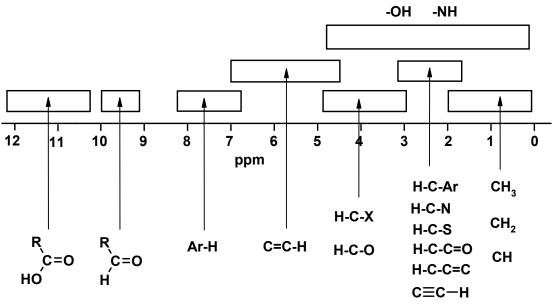

14% PART 6: SPECTROSCOPY

WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED. Show your workings as PARTIAL marks will be given.

From the spectral data provided below, identify the **structure** of a molecule with the **molecular formula** $C_{11}H_{15}NO$.

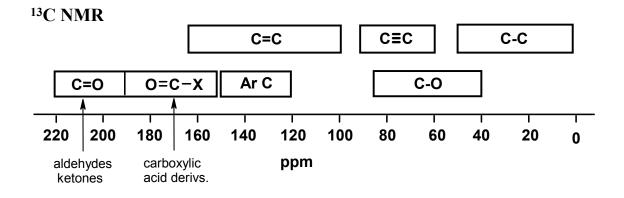
13% PART 7: MECHANISM

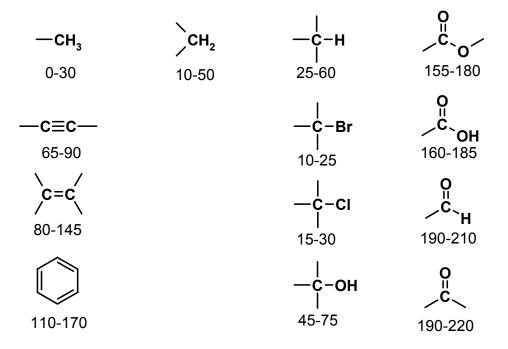
Write your answer in the booklet provided. For FULL marks you MUST show your working. PARTIAL marks will be awarded.


- (a) Draw a mechanistic sequence using double headed (*i.e.* electron pair) curly arrows that represents the *single reaction sequence* described verbally by the following points in which an alkene, 2-methylpropene, reacts with methanol in the presence of an acid catalyst to give t-butyl methyl ether.
- **Step 1.** Protonation of the alkene π -bond in 2-methylpropene by sulfuric acid to create the more stable tertiary carbocation and the bisulfate ion.
- **Step 2**. Attack on the electrophilic carbocation by a molecule of methanol acting as a nucleophile to generate an oxonium ion.
- **Step 3**. Deprotonation of the oxonium ion by the bisulfate ion acting as a base to give the ether, t-butyl methyl ether, and regenerating the catalyst, sulfuric acid.
- (b) Based on the sequence described in part **a**, draw the product of the reaction sequence if in step 1 the less stable isomeric primary carbocation is formed instead. Give the systematic IUPAC name of this product.
- (c) Based on the sequence described in part **a**, predict the product of the reaction of 1-phenylpropene with methanol in the presence of an acid catalyst. Briefly rationalise your choice.

** THE END **

ASC / IRH / CCL Nov 2009


SPECTROSCOPIC TABLES



¹H NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm

	methyl CH ₃ -	methylene -CH ₂ -	methyne CH	other
R−C 	0.9	1.4	1.5	-OH 1-5
	1.6	2.3	2.6	-NH 1-3 C≡CH 2.5
O II C		2.4	2.5	C=C 5.5 Ar-H 7.3
R-N	2.2	2.5	2.9	о "С н 10
R-Ar	2.3	2.7	3.0	
R-Br	2.7	3.3	4.1	о " к ^с он ⁹⁻¹²
R-CI	3.1	3.4	4.1	
R-0-	3.3	3.4	3.7	

¹³C NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm

INFRA-RED GROUP ABSORPTION FREQUENCIES

	1	TYPE OF VIBRATION	FREQUENCY (cm ⁻¹)	<u>WAVELENGTH</u> (µ)	INTENSITY (1)
C–H	Alkanes	(stretch)	3000-2850	3.33-3.51	S
	–CH ₃	(bend)	1450 and 1375	6.90 and 7.27	m
	-CH ₂ -	(bend)	1465	6.83	m
	Alkenes	(stretch)	3100-3000	3.23-3.33	m
		(bend)	1700-1000	5.88-10.0	s
	Aromatics	(stretch)	3150-3050	3.17-3.28	s
		(out-of-plane bend)	1000-700	10.0-14.3	s
	Alkyne	(stretch)	ca. 3300	ca.3.03	s
	Aldehyde		2900-2800	3.45-3.57	W
			2800-2700	3.57-3.70	w
C–C	Alkane	not usually useful			
C=C	Alkene		1680-1600	5.95-6.25	m-w
	Aromatic		1600-1400	6.25-7.14	m-w
C≡C	Alkyne		2250-2100	4.44-4.76	m-w
C=O	Aldehyde		1740-1720	5.75-5.81	S
	Ketone		1725-1705	5.80-5.87	S
	Carboxylic ac	id	1725-1700	5.80-5.88	S
	Ester		1750-1730	5.71-5.78	S
	Amide		1700-1640	5.88-6.10	S
	Anhydride		ca. 1810	ca. 5.52	S
			ca. 1760	ca. 5.68	s
C-0	Alcohols, Eth	ers, Esters,			
	Carboxylic ac	ids	1300-1000	7.69-10.0	S
O-H	Alcohols, Phe	enols			
	Free		3650-3600	2.74-2.78	m
	H-Bonde	ed	3400-3200	2.94-3.12	m
	Carboxylic ac	ids (2)	3300-2500	3.03-4.00	m
N–H	Primary and s	secondary amines	ca. 3500	ca. 2.86	m
C≡N	Nitriles		2260-2240	4.42-4.46	m
N=O	Nitro (R–NO ₂))	1600-1500	6.25-6.67	S
	-		1400-1300	7.14-7.69	S
C–X	Fluoride		1400-1000	7.14-10.0	s
	Chloride		800-600	12.5-16.7	S
	Bromide, Iodi	de	<600	>16.7	S

(1) s = strong, m = medium and w = weak

(2) note that the -OH absorption of solid carboxylic acids which run as a nujol mull can be difficult to see as they maybe very broad

PERIODIC TABLE

1 1A																	18 8A
1 H	2											13	14	15	16	17	2 He
1.008	2A	_										3A	4A	5A	6A	7A	4.003
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
6.941 11	9.012 12											10.81	12.01 14	14.01 15	16.00 16	19.00 17	20.18 18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
22.99	24.31	5	Ŧ	5	U	1	0)	10	11	1 4	26.98	28.09	1 30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89**	104	105	106	107	108	109	110	111							
Fr	Ra	Ac	Rf	На	Sg	Ns	Hs	Mt	Uun	Uuu							
(223)	226.0	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)							
	Lant	hanio	des *	58	59	60	61	62	63	64	65	66	67	68	69	70	71

Lanthanides *	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Actinides **	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinucs	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)