UNIVERSITY OF CALGARY
 FACULTY OF SCIENCE
 MIDTERM EXAMINATION
 CHEMISTRY 351

November 4th, 2010
Time: 2 Hours
READ THE INSTRUCTIONS CAREFULLY
PLEASE WRITE YOUR NAME, STUDENT I.D. NUMBER ON BOTH YOUR ANSWER
BOOKLET AND COMPUTER ANSWER SHEET.

The examination consists of Parts 1-7, each of which should be attempted. Note that some parts provide you with a choice of questions, e.g. answer 4 out of 5 . These will be graded in numerical order until the required number have been graded, regardless of whether they are right or wrong. Parts $1-4$ will be computer graded, and only Parts 5 , 6 , and 7 are to be answered in the booklet provided. A periodic table with atomic numbers and atomic weights and infrared data tables are located on the last two pages.

Parts 1-4 consist of a series of multiple choice questions numbered 1-33 which are to be answered on your computer answer sheet. Indicate your answer by blackening out the appropriate space, A, B, C, D or E on the answer sheet. Use a pencil only and not ink. In some cases it is required that you indicate multiple items for a complete and/or correct answer by blackening out more than one space. In some other cases more than five options are available and some of these also require more than one space to be blackened out. For an example, an option specified as $A B$ requires that you blacken out both space A and space B. Part marks may be awarded in some of the questions. Incorrect answers must be erased cleanly.

Molecular models are permitted during the exam; calculators are also permitted, but NOT programmable calculators.

Absolutely no other electronic devices are allowed.

18\%

PART 1: RELATIVE PROPERTIES

ANSWER ANY NINE (9) of questions 1-10 (2 marks per question)

Arrange the items in questions 1-10 in DECREASING ORDER (i.e. greatest, most etc. first) with respect to the indicated property.

Use the following code to indicate your answers.
A. \quad i $>$ ii $>$ iii
D. \quad ii $>\mathrm{iii}>\mathrm{i}$
B. \quad i $>$ iii $>$ ii
E. \quad iii $>$ i $>$ ii
C. \quad ii $>$ i $>$ iii
AB. \quad iii $>\mathrm{ii}>\mathbf{i}$

1. The boiling points of the following:

i

ii

iii
2. The heats of formation of the following (most exothermic to least exothermic):

i

ii

iii
3. The relative yields of the following monochlorinated products from the u.v. light promoted reaction of Cl_{2} with 2,2-dimethylbutane:

i

ii

iii

Use the following code to indicate your answers.

A. \quad i $>$ ii $>$ iii
D. \quad ii $>\mathrm{iii}>\mathrm{i}$
B. $\quad \mathrm{i}>\mathrm{iii}>\mathrm{ii}$
E. \quad iii $>\mathrm{i}>\mathrm{ii}$
C. \quad ii $>\mathrm{i}>\mathrm{iii}$
AB. \quad iii $>\mathrm{ii}>\mathbf{i}$
4. The number of peaks in the normal (broadband) ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of each of the following:

i

ii

iii
5. The relative acidity of each of the following:

I

ii

iii
6. The relative basicity of each of the following:

i

ii

iii
7. The formal charge associated with the atoms indicated (most positive to most negative):

Use the following code to indicate your answers.

A. \quad i $>$ ii $>$ iii
D. \quad ii $>\mathrm{iii}>$ i
B. \quad i $>\mathrm{iii}>\mathrm{ii}$
E. \quad iii $>\mathrm{i}>\mathrm{ii}$
C. \quad ii $>\mathrm{i}>\mathrm{iii}$
AB. \quad iii $>\mathrm{ii}>\mathbf{i}$
8. The relative importance of the following resonance contributors to the structure shown (all required charges are shown):

i

ii

iii
9. The relative strength of the $\mathrm{C}-\mathrm{H}$ bonds indicated in each of the following:

10. The relative IHD (index of hydrogen deficiency or units of unsaturation) of the following molecules:

i

ii
$\mathrm{C}_{2} \mathrm{Cl}_{4}$
iii

18\% PART 2: MOLECULAR PROPERTIES

ANSWER ALL of the questions 11-19.

Bimatoprost is a drug used to treat glaucoma, a leading cause of blindness. It is structurally similar to a group of lipid compounds called prostaglandins that have important functions in the animal body.

Bimatoprost
11. What is the IHD of Bimatoprost ?
A. 4
B. 5
C. 6
D. 7
E. 8
12. What are the hybridizations of $\mathbf{O 1 7} / \mathbf{O 2 5}$ respectively?
A. $\mathrm{sp}^{3}, \mathrm{sp}^{3}$
B. $\mathrm{sp}^{3}, \mathrm{sp}^{2}$
C. $\mathrm{sp}^{2}, \mathrm{sp}^{2}$
D. $\mathrm{sp}^{2}, \mathrm{sp}$
E. $s p^{3}, \mathrm{sp}$
13. What is the closest value to the C9-C10-C11 bond angle ?
A. 90°
B. 112°
C. 109.5°
D. 120°
E. 180°
14. On which of the following atoms in Bimatoprost is the most acidic hydrogen atom?
A. C6
B. C 23
C. C 27
D. N26
E. 030

15. Which $\mathrm{C}-\mathrm{H}$ bond is the weakest among those listed below ?
A. C2-H
B. $\mathbf{C} 6-\mathrm{H}$
C. $\mathrm{C} 10-\mathrm{H}$
D. $\mathbf{C 1 3 - H}$
E. $\mathbf{C 2 8 - H}$
16. Among the bonds listed below, which one is the shortest?
A. C4-C18
B. C11-C12
C. C14-C15
D. C19-C20
E. C22-C23
17. What type of orbital does the lone pair of $\mathbf{N} 26$ occupy ?
A. s
B. p
C. sp
D. sp^{2}
E. $s p^{3}$
18. What functional groups are present in Bimatoprost?
A. alcohol
B. aldehyde
C. amide
D. amine
E. ketone
19. What term(s) can be used to best describe $\mathbf{C 1}$?
A. primary
B. secondary
C. tertiary
D. allylic
E. benzylic

15\% PART 3: SPECTROSCOPY

ANSWER ALL SIX (6) OF QUESTIONS 20 - 25 ($\mathbf{2 . 5}$ marks per question).

For each of the questions $\mathbf{2 0} \mathbf{- 2 5}$, match the IR spectra to a structure from the list provided below:

A

B

C

D

E

AB

AC

AD

AE

BC

20

21

22

23

24

25

14\% PART 4: NOMENCLATURE

ANSWER ANY SEVEN (7) of the questions 26-33 (2 marks per question).
For each of questions 26 to 27 , select the correct name for the compound shown:

A. 1-ethyl-3,4-dimethylcyclohexane
B. 1,2-dimethyl-4-ethylcyclohexane
C. 4-ethyl-1,2-dimethylcyclohexane
D. 3-ethyl-1,6-dimethylcyclohexane
E. 5-ethyl-1,2-dimethylcyclohexane

27

28

A. 3-(1,2,2-trimethylpropyl)cyclopentene
B. 3-(2,2 dimethylbutyl)cyclopentene
C. 2-(2,2 dimethylbutyl)cyclopentene
D. 1-(1,2,2-trimethylpropyl)cyclopent-2-ene
E. 1-(1,1,2-trimethylpropyl)cyclopent-2-ene
A. 1-ethyl-3-methylcyclohexane
B. 3-ethyl-1-methylcyclohexane
C. 1-methyl-3-ethylcyclohexane
D. 1-methyl-5-ethylcyclohexane
E. 5-ethyl-1-methylcyclohexane

29

A. (Z)-4-aminohept-3-ene
B. (E)-4-aminohept-3-ene
C. (Z)-4-aminohept-4-ene
D. (E)-4-aminohept-4-ene
E. cis-4-aminohept-4-ene

For each of questions 30 to 33 , select the correct structure for the name provided:
30. isopropyl phenyl ether

A

B

C

D

E
31. ethyl ortho-chlorobenzoate :

A

B

C

D

E
32. (S)-2-methylcyclohex-2-en-1-ol :

A.

B.

C.

D.

E.
33. 1,2-dimethylbicyclo[2.2.1]hept-2-ene:

A

B

C

D

E

11\%PART 5: STRUCTURE DETERMINATION

Write your answer in the booklet provided. For FULL marks you MUST show your work. PARTIAL marks will be awarded.

Elemental analysis on an organic molecule was found to have 88.2% carbon and 11.8% hydrogen by weight. The mass spectrum revealed a molecular ion at $m / z 68$.
a) What is the empirical formula ?
b) What is the molecular formula ?
c) What is the index of hydrogen deficiency?
d) Draw a structure that matches the above data and has two types of hydrogen and four types of carbon.
e) Draw a structure that matches the above data and has two types of hydrogen and three types of carbon.
f) Draw a structure that matches the above data and has one type of hydrogen and two types of carbon.

PART 6: THERMODYNAMICS

2,2-Dimethylhexane and 2,2,3,3-tetramethylbutane are structural (constitutional) isomers.
a) Write a balanced equation for the combustion of these $\mathrm{C}_{8} \mathrm{H}_{18}$ isomers.
b) One of these isomers has a heat of combustion $\left(\Delta \mathrm{H}_{\mathrm{C}}{ }^{\circ}\right)=-1303.0 \mathrm{kcal} \mathrm{mol}^{-1}$.

Calculate $\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}$, for this isomer using the following heats of combustion:
$\Delta \mathrm{H}_{\mathrm{C}}{ }^{0}, \mathrm{C}($ graphite $)=-93.9 \mathrm{kcal} \mathrm{mol}^{-1}$
$\Delta \mathrm{H}_{\mathrm{C}}{ }^{\circ}, \mathrm{H}_{2}$ (gas) $=-68.4 \mathrm{kcal} \mathrm{mol}^{-1}$
c) If the other $\mathrm{C}_{8} \mathrm{H}_{18}$ isomer has a heat of formation $\left(\Delta \mathrm{H}_{f}{ }^{\circ}\right)=+30.4 \mathrm{kcal} \mathrm{mol}^{-1}$, which of the above named isomers correspond to which heat of formation? STATE which isomer is more stable and justify your choice.
d) When 2,2,3,3-tetramethylbutane was treated with an equimolar amount of chlorine and irradiated with ultraviolet light, it produced a single monochlorinated derivative. Calculate the heat of reaction given the following bond dissociation energies:

C-H: 105 kcal mole ${ }^{-1}$
C-Cl: $84 \mathrm{kcal} \mathrm{mole}^{-1}$
$\mathrm{Cl}-\mathrm{Cl}: 58 \mathrm{kcal} \mathrm{mole}^{-1}$
$\mathrm{H}-\mathrm{Cl}: 103 \mathrm{kcal} \mathrm{mole}^{-1}$
e) Is the reaction exothermic or endothermic?

PART 7: MECHANISM

Write your answer in the booklet provided. For FULL marks you MUST show your working. PARTIAL marks will be awarded.
(a) Draw a mechanistic sequence using double headed (i.e. electron pair) curly arrows that represents the single reaction sequence described verbally by the following points in which a carboxylic acid, benzoic acid, is alkylated using 1bromopropane in the presence of a base, ammonia, to yield propyl benzoate.

Step 1. Deprotonation of benzoic acid by ammonia to create the conjugate base of benzoic acid (which is a carboxylate ion).

Step 2. Attack of the carboxylate ion as a nucleophile on the electrophilic carbon of 1bromopropane producing propyl benzoate with the simultaneous loss of a bromide ion as the leaving group.
(b) NAME another base that could be used to deprotonate benzoic acid for this reaction.
(c) Based on the above sequence, what reagents could be used to synthesize isopropyl benzoate ?
(d) Based on the above sequence, what reagents could be used to prepare phenyl propyl ether ?
(e) Is a phenol more or less acidic than a carboxylic acid? Briefly explain why.

** THE END **

ASC / IRH / TGB Nov 2010

INFRA-RED GROUP ABSORPTION FREQUENCIES

	TYPE OF VIBRATION	FREQUENCY $\left(\mathrm{cm}^{-1}\right)$	WAVELENGTH (μ)	INTENSITY (1)
C-H	Alkanes (stretch)	3000-2850	3.33-3.51	s
$-\mathrm{CH}_{3}$	(bend)	1450 and 1375	6.90 and 7.27	m
$-\mathrm{CH}_{2}{ }^{-}$	(bend)	1465	6.83	m
	Alkenes (stretch)	3100-3000	3.23-3.33	m
	(bend)	1700-1000	5.88-10.0	s
	Aromatics (stretch)	3150-3050	3.17-3.28	s
	(out-of-plane bend)	1000-700	10.0-14.3	s
	Alkyne (stretch)	ca. 3300	ca.3.03	s
	Aldehyde	2900-2800	3.45-3.57	w
		2800-2700	3.57-3.70	w
C-C	Alkane not usually useful			
$\mathrm{C}=\mathrm{C}$	Alkene	1680-1600	5.95-6.25	m-w
	Aromatic	1600-1400	6.25-7.14	m-w
$\mathrm{C} \equiv \mathrm{C}$	Alkyne	2250-2100	4.44-4.76	m-w
$\mathrm{C}=\mathrm{O}$	Aldehyde	1740-1720	5.75-5.81	s
	Ketone	1725-1705	5.80-5.87	s
	Carboxylic acid	1725-1700	5.80-5.88	s
	Ester	1750-1730	5.71-5.78	s
	Amide	1700-1640	5.88-6.10	s
	Anhydride	ca. 1810	ca. 5.52	s
		ca. 1760	ca. 5.68	s
$\mathrm{C}-\mathrm{O}$	Alcohols, Ethers, Esters,			
	Carboxylic acids	1300-1000	7.69-10.0	s
O-H	Alcohols, Phenols			
	Free	3650-3600	2.74-2.78	m
	H-Bonded	3400-3200	2.94-3.12	m
	Carboxylic acids (2)	3300-2500	3.03-4.00	m
N-H	Primary and secondary amines	ca. 3500	ca. 2.86	m
$\mathrm{C} \equiv \mathrm{N}$	Nitriles	2260-2240	4.42-4.46	m
$\mathrm{N}=\mathrm{O}$	Nitro (R-NO2)	1600-1500	6.25-6.67	s
		1400-1300	7.14-7.69	s
C-X	Fluoride	1400-1000	7.14-10.0	s
	Chloride	800-600	12.5-16.7	s
	Bromide, lodide	<600	>16.7	s

(1) $s=$ strong, $m=$ medium and $w=$ weak
(2) note that the -OH absorption of solid carboxylic acids which run as a nujol mull can be difficult to see as they maybe very broad

PERIODIC TABLE

Actinides **	$\begin{gathered} 58 \\ \text { Ce } \\ 140.1 \\ \hline \end{gathered}$	$\begin{gathered} 59 \\ \text { Pr } \\ 140.9 \end{gathered}$	$\begin{gathered} 60 \\ \text { Nd } \\ 144.2 \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ (145) \\ \hline \end{gathered}$	$\begin{gathered} 62 \\ \mathbf{S m} \\ 150.4 \\ \hline \end{gathered}$	$\begin{gathered} \hline 63 \\ \mathbf{E u} \\ 152.0 \\ \hline \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 65 \\ \mathbf{T b} \\ 158.9 \end{gathered}$	$\begin{gathered} \hline 66 \\ \text { Dy } \end{gathered}$ 162.5	$\begin{gathered} \hline 67 \\ \mathbf{H o} \\ 164.9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 68 \\ \mathbf{E r} \\ 167.3 \\ \hline \end{gathered}$	$\begin{gathered} 69 \\ \mathbf{T m} \\ 168.9 \end{gathered}$	$\begin{gathered} \hline 70 \\ \mathbf{Y b} \\ 173.0 \end{gathered}$	$\begin{gathered} \hline 71 \\ \mathbf{L u} \\ 175.0 \end{gathered}$
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	$\begin{gathered} \text { Th } \\ 232.0 \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{P a} \\ 231.0 \end{gathered}$	$\begin{gathered} \mathbf{U} \\ 238.0 \\ \hline \end{gathered}$	$\mathbf{N p}$ 237.0	$\begin{gathered} \mathbf{P u} \\ (244) \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{A m} \\ & (243) \end{aligned}$	$\begin{aligned} & \mathbf{C m} \\ & (247) \end{aligned}$	$\begin{array}{r} \text { Bk } \\ (247) \\ \hline \end{array}$	$\underset{(251)}{\mathbf{C f}}$	$\begin{gathered} \text { Es } \\ (252) \end{gathered}$	$\begin{aligned} & \text { Fm } \\ & (257) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Md } \\ & (258) \end{aligned}$	$\begin{gathered} \text { No } \\ (259) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{L r} \\ (260) \end{gathered}$

