UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

MIDTERM EXAMINATION
CHEMISTRY 351
November 6th, 2013
Time: 2 Hours

READ THE INSTRUCTIONS CAREFULLY

PLEASE WRITE YOUR NAME, STUDENT I.D. NUMBER ON BOTH YOUR ANSWER BOOKLET AND COMPUTER ANSWER SHEET. ENTER VERSION NUMBER 1 ON THE COMPUTER ANSWER SHEET

The examination consists of Parts 1-7, each of which should be attempted. Note that some parts provide you with a choice of questions, e.g. answer 4 out of 5 . These will be graded in numerical order until the required number have been graded, regardless of whether they are right or wrong. Parts $1-4$ will be computer graded, and only Parts 5 , 6 , and 7 are to be answered in the booklet provided. .

Parts 1-4 consist of a series of multiple choice questions numbered 1-31 which are to be answered on your computer answer sheet (no extra time is provided for "bubbling" in the score sheet). Indicate your answer by blackening out the appropriate space, A, B, C, D or E on the answer sheet. Use a pencil only and not ink. In some cases it is required that you indicate multiple items for a complete and/or correct answer by blackening out more than one space. In some other cases more than five options are available and some of these also require more than one space to be blackened out. For an example, an option specified as $A B$ requires that you blacken out both space A and space B. Part marks may be awarded in some of the questions. Incorrect answers must be erased cleanly.

A periodic table with atomic numbers and atomic weights and infrared data tables are located on the last two pages

Molecular models are permitted during the exam; calculators are also permitted, but NOT programmable calculators.. Absolutely no other electronic devices are allowed.

14\% PART 1: RELATIVE PROPERTIES

ANSWER ANY SEVEN (7) of questions 1-8 (2 marks per question)
Arrange the items in questions 1-8 in DECREASING ORDER (i.e. greatest, most etc. first) with respect to the indicated property.

Use the following code to indicate your answers.
A. $\quad \mathrm{i}>\mathrm{ii}>\mathrm{iii}$
D. $\mathrm{ii}>\mathrm{iii}>\mathrm{i}$
B. $\mathrm{i}>\mathrm{iii}>\mathrm{ii}$
E. \quad iii $>\mathrm{i}>\mathrm{ii}$
C. \quad ii $>\mathrm{i}>$ iii
AB. \quad iii $>\mathrm{ii}>\mathrm{i}$

1. The relative formal charge on the nitrogen atom in each of the following molecules:

i

ii

iii
2. The relative stabilities of the following carbocations:

i

ii

iii
3. The relative strengths of the $\mathbf{C}-\mathbf{H}$ bonds indicated below:

4. The relative basicity of each of the following:
CH_{4}
i
NH_{3}
ii
$\mathrm{CH}_{3} \mathrm{O}^{-}$
iii

Use the following code to indicate your answers.

A. $\quad \mathrm{i}>\mathrm{ii}>\mathrm{iii}$
D. $\quad \mathrm{ii}>\mathrm{iii}>\mathrm{i}$
B. $\quad \mathrm{i}>\mathrm{iii}>\mathrm{ii}$
E. \quad iii $>\mathrm{i}>\mathrm{ii}$
C. \quad ii $>\mathrm{i}>\mathrm{iii}$
AB. \quad iii $>\mathrm{ii}>\mathrm{i}$
5. The relative stabilities of each of the following radicals:

i

ii

iii
6. The relative acidity of each of the following :

i

ii

iii
7. The amino acid serine is shown below along with the pKa values:

Rank the relative amounts of each of the following species in a solution of $\mathrm{pH}=2.5$:

ii

8. The relative importance of the following resonance contributors of nitromethane:

i

ii

iii

PART 2: MOLECULAR PROPERTIES

ANSWER ALL of the questions 9-17 (2 marks per question)
For each of the questions 9-17 select the appropriate answer(s) from the answers provided. In some cases more than one selection may be required for full credit.

Loracarbef is an antibacterial compound. Use its structure as depicted below to answer the questions 9-17.

Loracarbef

Loracarbef

(with atoms numbered)

9. What is the index of hydrogen deficiency (IHD) of Loracarbef?
A 6
B 7
C 8
D 9
E 10
10. Of the atoms listed below, which is the most basic?
A 09
B C2
C N10
D N14
E Cl 21
11. What configuration terms best describe $\mathbf{C} 6$ and the alkene $\mathbf{C} 2=\mathbf{C} 3$ respectively ?
A $R E$
B $R Z$
C SE
D $S Z$
12. What is the oxidation state of $\mathbf{C} 13$?
A +2
B +1
C 0
D -1
E -2

Loracarbef

Loracarbef

(with atoms numbered)

13. Which of the following functional groups is boxed in Loracarbef (above) ?
A. alcohol
B. amide
C. ether
D. ketone
E. amine
14. Which of the following bonds is the longest?
A C15-C20
B C13-C15
C N10-C11
D C4-C5
E C2-C3
15. What type of orbital does the lone pair of electrons on $\mathbf{N} 10$ occupy ?
A. $s p^{3}$
B. sp^{2}
C. sp
D. s
E. p
16. What are the hybridizations of atoms $\mathbf{C 4}$ and $\mathbf{N} 14$ respectively ?
A. $s p^{3} / s p^{3}$
B. $\mathrm{sp}^{3} / \mathrm{sp}^{2}$
C. $\mathrm{sp}^{2} / \mathrm{sp}^{3}$
D. $\mathrm{sp}^{2} / \mathrm{sp}^{2}$
E. $\mathrm{sp}^{3} / \mathrm{sp}$
17. Which of the following terms describe position $\mathbf{C} 13$?
A. primary
B. secondary
C. tertiary
D. allylic
E. benzylic

15\% PART 3: SPECTROSCOPY

ANSWER ALL SIX (6) OF QUESTIONS 18-23 (2.5 marks per question).
For each of the questions 18-23, match the IR spectra to a structure in the list below:

A

C

D

E

AB

AC

AD

AE

BC
18.

19.

20.

21.

22.

23.

PART 4: NOMENCLATURE

ANSWER ANY SEVEN (7) of the questions 24-31 (2 marks per question).

For each of questions 24 to 27, select the correct IUPAC name for the compound shown:
24.

25.

A. 4-(1,1-dimethylethyl)-5-ethyloctane
B. 5-(1,1-dimethylethyl)-4-ethyloctane
C. 4-ethyl-5-(1,1-dimethylethyl)octane
D. 5-ethyl-4-(1,1-dimethylethyl)octane
E. 4,5-diethyl-2,2-dimethyloctane
A. 5-hydroxypentan-2-one
B. 1-hydroxypentan-4-one
C. 2-oxapentan-1-ol
D. 5-hydroxypentan-2-al
E. 1-oxypentan-4-one
26.

A. 1,1,2-trimethylcyclohexene
B. 1,2,2-trimethylcyclohexene
C. 1,1,6-trimethylcyclohexene
D. 1,6,6-trimethylcyclohexene
E. 2,2,3-trimethylcyclohexene
27.

A. cis-3-methyl-4-ethylhex-3-ene
B. trans-3-methyl-4-ethylhex-3-ene
C. cis-3-ethyl-4-methylhex-3-ene
D. trans-3-ethyl-4-ethylhex-3-ene
E. 3-ethyl-4-methylhex-3-ene

For each of questions 28 to 31, select the correct structure for the IUPAC name provided:
28. isobutyl phenyl ether

A.

C.

D.

E.
29. o-nitrobenzaldehyde

A

B

C

D

E
30. (R)-5,5-dimethylcyclopent-2-en-1-ol :

A.

B.

C.

D.

E.
31. 2-methylbicyclo[3.2.1]oct-6-ene:

A

B

C

D

E

PART 5: STRUCTURE DETERMINATION
Write your answer in the booklet provided. For FULL marks you MUST show your work. PARTIAL marks will be awarded.

Unknown organic molecule \mathbf{X} has a molecular formula of $\mathrm{C}_{8} \mathrm{H}_{14}$. Answer the following questions about molecule \mathbf{X} and its isomers.
a) What is the Index of Hydrogen Deficiency (IHD) of this molecule?
b) Draw an isomer of \mathbf{X} that has 3 types of H atoms
c) Draw an isomer of \mathbf{X} that has a double bond in the E configuration
d) Draw an isomer of \mathbf{X} that displays distinct stretching frequencies at $2150 \mathrm{~cm}^{-1}$ and at $3300 \mathrm{~cm}^{-1}$
e) i. Which of the isomers you drew for \mathbf{b}, \mathbf{c} and \mathbf{d} is the most acidic?
ii. Use structural arguments to briefly explain why this site is the most acidic.
iii. Show a balanced reaction equation for deprotonation of this isomer at its most acidic site. Be sure to use a base that would be strong enough to do this deprotonation.
f) Use the isomer of \mathbf{X} you drew in part \mathbf{c} to answer the following questions:
i. Draw a reaction equation to show the major product(s) of reacting this isomer of \mathbf{X} with Br_{2} in the presence of light. Explain why this(these) is(are) the expected product(s).
ii. After performing the reaction described in $\mathbf{f} \mathbf{i}$ above, a chemist tested the product mixture and found a product with molecular formula $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{Br}_{2}$. Explain what this tells you.

PART 6: THERMODYNAMICS
Write your answer in the booklet provided. For FULL marks you MUST show your working. PARTIAL marks will be awarded.

A student was working in the laboratory and labeled three vials for isomeric compounds \mathbf{X}, \mathbf{Y}, and \mathbf{Z}. The student remembered that \mathbf{Z} was definitely pent-1-yne, however (s)he forgot which was 1,3 -pentadiene and which was 1,4 -pentadiene...

Compound	$\Delta \mathrm{H}_{\mathrm{C}}{ }^{\circ}$	$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$
\mathbf{X}	$-768.93 \mathrm{kcal} \mathrm{mol}^{-1}$	$?$
\mathbf{Y}	$?$	$18.12 \mathrm{kcal} \mathrm{mol}^{-1}$
$\mathbf{Z}=$ pent-1-yne	$?$	$34.49 \mathrm{kcal} \mathrm{mol}^{-1}$

a) Draw line diagrams of the three compounds:
pent-1-yne, 1,3-pentadiene, and 1,4-pentadiene.
b) Since the student had the heats of combustions for graphite and $\mathrm{H}_{2}(\mathrm{~s})$ he determined that it was possible to determine the heat of formation $\left(\Delta \mathrm{H}_{f}{ }^{\circ}\right)$ of compound \mathbf{X}.
Calculate $\Delta H_{f}{ }^{\circ}$, for this isomer using the following heats of combustion:

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{C}}{ }^{0}, \mathrm{C} \text { (graphite) }=-93.9 \mathrm{kcal} \mathrm{~mol}^{-1} \\
& \Delta \mathrm{H}_{\mathrm{C}}^{0}, \mathrm{H}_{2} \text { (gas) }=-68.4 \mathrm{kcal} \mathrm{~mol}^{-1}
\end{aligned}
$$

c) Match 1,3-pentadiene and 1,4-pentadiene to the above heat of formation values, ΔH_{f}°. Use structural arguments to justify your answer of which of the two isomers is more stable and briefly justify your choice.
d) Show how the stability of pent-1-yne relates to the other two by drawing an energy diagram to illustrate the relative energy differences.

PART 7: MECHANISM

Write your answer in the booklet provided. For FULL marks you MUST show your working. PARTIAL marks will be awarded.
a) Draw a mechanistic sequence using double headed (i.e. electron pair) curly arrows that represents the single reaction sequence described verbally by the following description, in which an alcohol, 3-methylbut-2-en-1-ol, undergoes nucleophilic substitution when reacted with HBr to give a mixture of two alkyl bromides.

Step 1. An acid / base reaction where 3-methylbut-2-en-1-ol is protonated by HBr to give an oxonium ion and a bromide ion.

Step 2. Loss of a water molecule from this species creating a resonance stabilized primary carbocation.

Step 3. Attack of the bromide ion as a nucleophile on the carbocation to give the product, 1-bromo-3-methylbut-2-ene, a primary alkyl bromide..
b) The carbocation formed in step 2 has resonance stablisation. Use curly arrows to derive the other major contributor.
c) Draw the structure of the other alkyl bromide that is produced by the reaction.
d) Is the carbocation produced in part b primary, secondary or tertiary ? Briefly explain your choice.

** THE END **

WLB / IRH / ERS Nov 2013

INFRA-RED GROUP ABSORPTION FREQUENCIES

	TYPE OF VIBRATION	FREQUENCY $\left(\mathrm{cm}^{-1}\right)$	WAVELENGTH (μ)	INTENSITY (1)
C-H	Alkanes (stretch)	3000-2850	3.33-3.51	s
$-\mathrm{CH}_{3}$	(bend)	1450 and 1375	6.90 and 7.27	m
$-\mathrm{CH}_{2}{ }^{-}$	(bend)	1465	6.83	m
	Alkenes (stretch)	3100-3000	3.23-3.33	m
	(bend)	1700-1000	5.88-10.0	s
	Aromatics (stretch)	3150-3050	3.17-3.28	s
	(out-of-plane bend)	1000-700	10.0-14.3	s
	Alkyne (stretch)	ca. 3300	ca.3.03	s
	Aldehyde	2900-2800	3.45-3.57	w
		2800-2700	3.57-3.70	w
C-C	Alkane not usually useful			
$\mathrm{C}=\mathrm{C}$	Alkene	1680-1600	5.95-6.25	m-w
	Aromatic	1600-1400	6.25-7.14	m-w
$\mathrm{C} \equiv \mathrm{C}$	Alkyne	2250-2100	4.44-4.76	m-w
$\mathrm{C}=\mathrm{O}$	Aldehyde	1740-1720	5.75-5.81	s
	Ketone	1725-1705	5.80-5.87	s
	Carboxylic acid	1725-1700	5.80-5.88	s
	Ester	1750-1730	5.71-5.78	s
	Amide	1700-1640	5.88-6.10	s
	Anhydride	ca. 1810	ca. 5.52	s
		ca. 1760	ca. 5.68	s
	Acyl chloride	1800	5.55	s
C-O	Alcohols, Ethers, Esters,			
	Carboxylic acids	1300-1000	7.69-10.0	s
O-H	Alcohols, Phenols			
	Free	3650-3600	2.74-2.78	m
	H-Bonded	3400-3200	2.94-3.12	m
	Carboxylic acids (2)	3300-2500	3.03-4.00	m
N-H	Primary and secondary amines	ca. 3500	ca. 2.86	m
$\mathrm{C} \equiv \mathrm{N}$	Nitriles	2260-2240	4.42-4.46	m
$\mathrm{N}=\mathrm{O}$	Nitro (R-NO2)	1600-1500	6.25-6.67	s
		1400-1300	7.14-7.69	s
C-X	Fluoride	1400-1000	7.14-10.0	s
	Chloride	800-600	12.5-16.7	s
	Bromide, lodide	<600	>16.7	s

[^0]
PERIODIC TABLE

Lanthanides *	$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.1 \\ \hline \end{gathered}$	$\begin{gathered} 59 \\ \mathbf{P r} \\ 140.9 \\ \hline \end{gathered}$	$\begin{gathered} 60 \\ \mathbf{N d} \\ 144.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 61 \\ \mathbf{P m} \\ (145) \end{gathered}$	$\begin{gathered} 62 \\ \mathbf{C m} \\ \mathbf{S m} \\ 150.4 \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ 152.0 \\ \hline \end{gathered}$	$\begin{gathered} 64 \\ \mathbf{G d} \\ \hline \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \\ \hline 158 \end{gathered}$	$\begin{gathered} \hline 66 \\ \text { Dy } \\ 162.5 \end{gathered}$	$\begin{gathered} \hline 67 \\ \text { Ho } \\ 164.9 \end{gathered}$	68 Er 167.3	$\begin{gathered} \hline 69 \\ \mathbf{T m} \\ 168.9 \\ \hline \end{gathered}$	70 $\mathbf{Y b}$ 173.0	$\begin{gathered} \hline 71 \\ \mathbf{L u} \\ 175.0 \end{gathered}$
Actinides **	90	${ }^{91}$	${ }^{92}$	93	94	95	96	97	98	99	100	${ }^{101}$	102	103
	Th	$\underset{\text { Pa }}{\substack{\text { an }}}$	$\underset{238.0}{\mathbf{U}}$	$\underset{237.0}{\mathbf{N p}}$	$\begin{gathered} \mathbf{P u} \\ (244) \end{gathered}$	$\begin{aligned} & \mathbf{A m} \\ & (243) \\ & \hline \end{aligned}$	$\mathbf{C m}$	$\underset{(247)}{\mathbf{B k}}$	$\underset{(251)}{\mathbf{C f}}$	$\underset{\substack{\text { Es } \\ \text { (25) }}}{\text { (}}$	$\underset{\text { Fm }}{(257)}$	$\begin{aligned} & \text { Md } \\ & (258) \\ & \hline \end{aligned}$	No (259)	$\xrightarrow{\mathbf{L r}} \mathbf{(2 6 0)}$

[^0]: (1) $s=$ strong, $m=$ medium and $w=$ weak
 (2) note that the - OH absorption of solid carboxylic acids which run as a nujol mull can be difficult to see as they maybe very broad

