UNIVERSITY OF CALGARY

FACULTY OF SCIENCE MIDTERM EXAMINATION

CHEMISTRY 351

November 6th, 2018

Version

 01Time: 2 Hours

READ THE INSTRUCTIONS CAREFULLY PLEASE WRITE YOUR NAME, STUDENT I.D. NUMBER ON BOTH YOUR ANSWER BOOKLET AND COMPUTER ANSWER SHEET. ENTER VERSION NUMBER 01 ON THE COMPUTER ANSWER SHEET

The examination consists of Parts 1-7, each of which should be attempted. Note that some parts provide you with a choice of questions, e.g. answer 4 out of 5 . These will be graded in numerical order until the required number have been graded, regardless of whether they are right or wrong. Parts $1-4$ will be computer graded, and only Parts 5, 6 , and 7 are to be answered in the blue booklet provided.

Parts 1-4 consist of a series of multiple choice questions numbered 1-31 which are to be answered on your computer answer sheet (no extra time is provided for "bubbling" in the score sheet). Indicate your answer by blackening out the appropriate space, A, B, C, D or E on the answer sheet. Use a pencil only and not ink. In some cases it is required that you indicate multiple items for a complete and/or correct answer by blackening out more than one space. In some other cases more than five options are available and some of these also require more than one space to be blackened out. For an example, an option specified as $A B$ requires that you blacken out both space A and space B. Part marks may be awarded in some of the questions. Incorrect answers must be erased cleanly.

A periodic table with atomic numbers and atomic weights and infrared data tables are located on the last two pages
Molecular models are permitted during the exam; calculators are also permitted, but NOT programmable calculators. Absolutely no other electronic devices are allowed.

14\%

PART 1: RELATIVE PROPERTIES

ANSWER ANY SEVEN (7) of questions 1-8 (2 marks per question)
Arrange the items in questions 1-8 in DECREASING ORDER (i.e. greatest, most etc. first) with respect to the indicated property.

Use the following code to indicate your answers.
A. $\quad \mathrm{i}>\mathrm{ii}>\mathrm{iii}$
D. $\mathrm{ii}>\mathrm{iii}>\mathrm{i}$
B. $\mathrm{i}>\mathrm{iii}>\mathrm{ii}$
E. \quad iii $>\mathrm{i}>\mathrm{ii}$
C. ii $>\mathrm{i}>$ iii
AB. \quad iii $>\mathrm{ii}>\mathrm{i}$

1. The relative lengths of the indicated bonds:

2. The formal charge on each of the corresponding nitrogen atoms indicated below (all required lone pairs are shown):

3. The relative basicity of the following compounds:

i

ii

iii
4. The relative stability of the following isomers:

i

ii

iii

Use the following code to indicate your answers.

A. \quad i $>\mathrm{ii}>\mathbf{i i i}$
D. \quad ii $>\mathrm{iii}>\mathrm{i}$
B. $\quad \mathrm{i}>\mathrm{iii}>\mathrm{ii}$
E. \quad iii $>$ i $>$ ii
C. \quad ii $>\mathrm{i}>\mathrm{iii}$
AB. \quad iii $>\mathrm{ii}>\mathbf{i}$
5. The relative stability of the following radicals:

i

ii

iii
6. The number of different monochlorinated constitutional isomers formed by the reaction each of the following molecules with chlorine in the presence of uv light:

i

ii

iii
7. The relative acidity of the most acidic H in the molecules:

i

ii

iii
8. The relative importance of the resonance contributors shown below to the resonance hybrid:

18\% PART 2: MOLECULAR PROPERTIES

ANSWER ALL of the questions 9-17
For each of the questions 9-17 select the appropriate answer(s) from the answers provided. In some cases more than one selection may be required for full credit.

Questions 9-17 all refer to Naloxone, an opioid antagonist (structure shown below):

Naloxone
9. Which atom is the most acidic hydrogen bonded to ?
A. C 2
B. C6
C. 015
D. C 21
E. O24
10. What type of orbital does the lone pair of $\mathbf{N} 20$ occupy ?
A. sp
B. sp^{2}
C. s
D. sp^{3}
E. p
11. What are the hybridisations of $\mathbf{O 7}$ and $\mathbf{O 1 5}$ respectively?
A. $\mathrm{sp}^{2}, \mathrm{sp}^{2}$
B. $\mathrm{sp}^{3}, \mathrm{sp}^{2}$
C. $\mathrm{sp}^{3}, \mathrm{sp}^{3}$
D. $\mathrm{sp}, \mathrm{sp}^{2}$
E. $\mathrm{sp}^{2}, \mathrm{sp}^{3}$
12. What is the IHD (index of hydrogen deficiency) of Naloxone ?
A. 7
B. 8
C. 9
D. 10
E. 11

Naloxone
13. Which of the following functional groups are found in Naloxone?
A. amide
B. amine
C. ester
D. ether
E. carboxylic acid
14. What configuration terms best describe $\mathbf{C} 6$ and the $\mathbf{C} 22=\mathbf{C} 23$ respectively ?
A. R, E
B. R, Z
C. S, E
D. S, Z
E. R only
AB. S only
15. Which of the bonds listed below is the shortest?
A. $\mathrm{C} 1-\mathrm{C} 2$
B. C2-C3
C. C10-C11
D. N20-C21
E. C22-C23
16. If Naloxone were reacted with TWO equivalents of NaOH , what are the best approximate percentages of deprotonations at $\mathbf{O 1 5}$ and $\mathbf{O 2 4}$?
A. $015 / \mathrm{O} 24(100 \%, 100 \%)$
B. $015 / \mathrm{O} 24(100 \%, 50 \%)$
C. $\mathrm{O} 15 / \mathrm{O} 24(100 \%, 0 \%)$
D. $\mathrm{O} 15 / \mathrm{O} 24(50 \%, 100 \%)$
E. 015/O24 (0\%, 100\%)
17. Which term(s) best describe C16 ?
A. primary
B. secondary
C. tertiary
D. benzylic
E. allylic

15\% PART 3: SPECTROSCOPY

ANSWER ALL SIX (6) OF QUESTIONS 18-23 (2.5 marks per question).

For each of the questions 18-23, match the IR spectra to a structure in the list below:

A

B

C

D

E

AB

AC

AD

AE

BC

18.

19.

20.

A

B

c

D

E

AB

AE

21.

22.

23.

PART 4: NOMENCLATURE

ANSWER ANY SEVEN (7) of the questions 24-31 (2 marks per question).

For each of questions 24 to 27 , select the correct IUPAC name for the compound shown:
24.

A. 4-ethyl-5-t-butyloctane
B. 4-(1,1-dimethylethyl)-5-ethyloctane
C. 4-(1,1-dimethylethyl)-3-propylheptane
D. 5-(1,1-dimethylethyl)-4-propylheptane
E. 5-ethyl-4-(1,1-dimethylethyl)-octane

AB. 3-propyl-4-(1,1-dimethylethyl)-heptane
25.

A. (Z)-2-ethylhex-2-enenitrile
B. (E)-2-ethylhex-2-enenitrile
C. (Z)-3-cyanohex-3-ene
D. (E)-3-cyanohex-3-ene
E. (Z)-4-cyanohex-3-ene

AB.(E)-4-cyanohex-3-ene
26.

A. 1-ethyl-2-methylcyclohexene
B. 2-methyl-1-ethylcyclohexene
C. 2-ethyl-1-methylcyclohexene
D. 1-methyl-2-ethylcyclohexene
E. 1-ethyl-6-methylcyclohexene

AB 6-ethyl-1-methylcyclohexene
A. trans-3-methylhex-4-on-2-ene
B. trans-4-methylhex-4-en-3-one
C. trans-3-methylhex-2-en-4-one
D. cis-3-methylhex-4-on-2-ene
E. cis-4-methylhex-4-en-3-one

AB.cis-3-methylhex-2-en-4-one

For each of questions 28 to 31, select the correct structure for the IUPAC name provided:
28. sec-butyl bromide

A.

B.

C.

D.

E.
29. ethyl o-methylbenzoate

A

B

C

D

E
30. (S)-6,6-dimethylcyclohex-2-en-1-ol

A.

B.

C.

D.

E.
31. 7-methylbicyclo[3.2.1]oct-2-ene:

A

B

C

D

E

PART 5: STRUCTURE DETERMINATION

Write your answer in the booklet provided. For FULL marks you MUST show your work. PARTIAL marks will be awarded.

Each of the following questions needs to be answered based on compound \mathbf{X} which has the molecular formula $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$.
a) What is the molecular weight of compound \mathbf{X} ?
b) What is the index of hydrogen deficiency of compound \mathbf{X} ?
c) Name 3 oxygen containing functional groups that could be present in isomers of \mathbf{X}.
d). Draw a structure for \mathbf{X} that would have a characteristic IR peak at $1715 \mathrm{~cm}^{-1}$, and contains four types of carbon, and three types of hydrogen.
e) Draw a structure for \mathbf{X} where the most acidic proton has a pKa ~25
f). Draw a structure for \mathbf{X} that has resonance-stabilisation and exists in a (Z,Z) configuration.
g) Draw a structure for \mathbf{X} that contains a ring and a chiral centre using the 3D wedgehash representation.

13\% PART 6: THERMODYNAMICS

Write your answer in the booklet provided. For FULL marks you MUST show your working. PARTIAL marks will be awarded.

A 3D representation of cyclopropane is shown below.

Three structures of substituted derivatives of cyclopropane are shown below:

i

ii

iii
a) Write a balanced reaction equation for the complete combustion of isomer i.
b) Calculate $\Delta \mathrm{H}_{\mathrm{f}^{\circ}}$ of isomer iii, given that the following heats of combustion:
$\Delta \mathrm{H} \mathrm{c}^{\circ}, \mathrm{C}$ (graphite) $=-93.9 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{H}^{\circ}, \mathrm{H}_{2}$ (gas) $=-68.4 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{H}^{\circ}$, isomer iii $=-805.9 \mathrm{kcal} / \mathrm{mol}$
c) Given that the heats of formation, $\Delta \mathrm{H}_{\mathrm{f}^{\circ}}$ of the other two isomers are $-6.3 \mathrm{kcal} / \mathrm{mol}$ and $-7.3 \mathrm{kcal} / \mathrm{mol}$: match each of the two isomers $\mathrm{i}-\mathrm{ii}$ to their corresponding $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ values;
d) Draw an energy diagram to illustrate the relative energy difference between all three isomers i-iii, with clearly labeled reactants, products, and all $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ values, and indicate which one is the most stable isomer and which one is the lease stable.
e) Use the principles of bonding, and conformational analysis (models lab experiment) to explain the trend that you observed in \mathbf{d} above.
f) A fourth isomer, iv, another substituted cyclopropane, reacts with chlorine and UV light to give two monochlorinated constitutional isomers. Draw the structure of isomer iv.

Write your answer in the booklet provided. For FULL marks you MUST show your working. PARTIAL marks will be awarded.

a) Draw a mechanistic sequence using double headed (i.e. electron pair) curly arrows that represents the reaction sequence described verbally by the following points in which 3-bromobut-1-ene (substrate), is placed in water (reagent), to give but-3-en-2ol and (E)-but-2-en-1-ol.

Step 1. The loss of bromine from 3-bromobut-1-ene gives a secondary carbocation and a bromide ion.

Step 2. Resonance stabilization of the secondary carbocation shows a primary carbocation contributor.

Step 3. The attack of water as a nucleophile on one of the carbocations in one of the resonance contributors produces an oxonium ion.

Step 4. An acid-base reaction of the oxonium ion with a molecule of water to give (E)-but-2-en-1-ol and a hydronium ion.
b) 3-bromobut-1-ene can be synthesized by radical bromination of but-2-ene with N bromosuccinimide and heat. However, a second product is also obtained. What is that product and briefly explain why it is formed (mechanism not required).
c) Based on the information provided in this question, what substrate and reagent would you use if you wanted to prepare 3-ethoxycyclohexene ? (mechanism not required)

** THE END **

IRH / CCL / RP F2018

INFRA-RED GROUP ABSORPTION FREQUENCIES

	TYPE OF VIBRATION	FREQUENCY $\left(\mathrm{cm}^{-1}\right)$	WAVELENGTH (μ)	INTENSITY (1)
C-H	Alkanes (stretch)	3000-2850	3.33-3.51	s
$-\mathrm{CH}_{3}$	(bend)	1450 and 1375	6.90 and 7.27	m
$-\mathrm{CH}_{2}{ }^{-}$	(bend)	1465	6.83	m
	Alkenes (stretch)	3100-3000	3.23-3.33	m
	(bend)	1700-1000	5.88-10.0	s
	Aromatics (stretch)	3150-3050	3.17-3.28	s
	(out-of-plane bend)	1000-700	10.0-14.3	s
	Alkyne (stretch)	ca. 3300	ca.3.03	s
	Aldehyde	2900-2800	3.45-3.57	w
		2800-2700	3.57-3.70	w
C-C	Alkane not usually useful			
$\mathrm{C}=\mathrm{C}$	Alkene	1680-1600	5.95-6.25	m-w
	Aromatic	1600-1400	6.25-7.14	m-w
$\mathrm{C} \equiv \mathrm{C}$	Alkyne	2250-2100	4.44-4.76	m-w
$\mathrm{C}=\mathrm{O}$	Aldehyde	1740-1720	5.75-5.81	s
	Ketone	1725-1705	5.80-5.87	s
	Carboxylic acid	1725-1700	5.80-5.88	s
	Ester	1750-1730	5.71-5.78	s
	Amide	1700-1640	5.88-6.10	s
	Anhydride	ca. 1810	ca. 5.52	s
		ca. 1760	ca. 5.68	s
	Acyl chloride	1800	5.55	s
C-O	Alcohols, Ethers, Esters,			
	Carboxylic acids	1300-1000	7.69-10.0	s
O-H	Alcohols, Phenols			
	Free	3650-3600	2.74-2.78	m
	H-Bonded	3400-3200	2.94-3.12	m
	Carboxylic acids (2)	3300-2500	3.03-4.00	m
N-H	Primary and secondary amines	ca. 3500	ca. 2.86	m
$\mathrm{C} \equiv \mathrm{N}$	Nitriles	2260-2240	4.42-4.46	m
$\mathrm{N}=\mathrm{O}$	Nitro (R-NO2)	1600-1500	6.25-6.67	s
		1400-1300	7.14-7.69	s
C-X	Fluoride	1400-1000	7.14-10.0	s
	Chloride	800-600	12.5-16.7	s
	Bromide, lodide	<600	>16.7	s

[^0]
PERIODIC TABLE

Lanthanides *	58	59	${ }^{60}$	${ }^{61}$	${ }^{62}$	${ }^{63}$	${ }^{64}$	65	${ }^{66}$	${ }^{67}$	${ }^{68}$	${ }^{69}$	70	${ }^{71}$
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Actinides **	90	91	${ }^{92}$	${ }^{93}$	94	95	96	97	98	99	100	101	102	${ }^{103}$
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	237.0	44)	(23)	(247)	(247)	51)	(252)	(257)	(258)	(259)	(260)

[^0]: (1) $s=$ strong, $m=$ medium and $w=$ weak
 (2) note that the -OH absorption of solid carboxylic acids which run as a nujol mull can be difficult to see as they maybe very broad

