# THE UNIVERSITY OF CALGARY 

FACULTY OF SCIENCE
MIDTERM EXAMINATION
CHEMISTRY 353
MARCH 9th, 2005
Time: 2 Hours

## PLEASE WRITE YOUR NAME AND FULL STUDENT I.D. NUMBER ON BOTH YOUR COMPUTER ANSWER SHEET and on the ANSWER BOOKLET provided.

## READ THE INSTRUCTIONS CAREFULLY

The exam consists of Parts 1-8, each of which should be attempted. Note that some Parts provide you with a choice of questions, e.g. 5 out of 6 . These will be graded in numerical order until the required number have been completed, regardless of whether they are right or wrong. Parts $1-5$ will be computer graded, and Parts 6,7 and 8 are to be answered IN THE BOOKLET PROVIDED. A periodic table with atomic numbers and atomic weights and spectroscopic data tables are included with this examination paper.

Parts 1-5 consist of a series of multiple choice questions numbered 1-45 which are to be answered on the computer answer sheet. Indicate your answer by blackening out the appropriate space, A, B, C, D or E on the answer sheet. Use a soft pencil only and not ink. In some cases it is required that you indicate multiple items for a complete and/or correct answer by blackening out more than one space. In some other cases more than five options are available and some of these also require more than one space to be blackened out. For an example, an option specified as AB requires that you blacken out both space A and space B. Part marks may be awarded in some of the questions. Incorrect answers must be erased cleanly.

Molecular models are permitted during the exam.

## Absolutely no electronic devices are allowed.

## PART 1: RELATIVE PROPERTIES

## 12\% ANSWER ANY SIX (6) OF QUESTIONS 1-8.

Arrange the items in each of the questions in this section in DECREASING ORDER (i.e. greatest first) with respect to the indicated property.

Use the following code to indicate your answers.
A. $\quad$ i $>\mathrm{ii}>\mathrm{iii}$
D. $\quad$ ii $>\mathrm{iii}>\mathrm{i}$
B. $\quad \mathrm{i}>\mathrm{iii}>\mathrm{ii}$
E. $\quad$ iii $>\mathrm{i}>\mathrm{ii}$
C. $\quad \mathrm{ii}>\mathrm{i}>\mathrm{iii}$
AB. $\quad$ iii $>\mathrm{ii}>\mathrm{i}$

1. The relative number of the allylic hydrogens in each of the following:

i

ii

iii
2. The relative reactivity towards aq. sulfuric acid of each of the following:

i

ii

iii
3. The relative acidity of the hydrogen atoms indicated:

4. The relative resonance energies of each of the following:

i

ii

iii

Use the following code to indicate your answers.
A. $\quad \mathrm{i}>\mathrm{ii}>\mathrm{iii}$
D. $\quad$ ii $>\mathrm{iii}>\mathrm{i}$
B. $\quad i>i i>i i$
E. $\quad$ iii $>\mathrm{i}>\mathrm{ii}$
C. $\quad$ ii $>\mathrm{i}>$ iii
AB. $\quad$ iii $>$ ii $>$ i
5. The relative reactivity towards methyl propenoate of each of the following:

i

ii

iii
6. The bond length of the following $C$ to $C$ bonds:

i

ii

iii
7. The relative reactivity of each of the following towards $\mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H}$ :

i

ii

iii
8. The relative yields of the following products from the reaction of phenylethene (also known as styrene) with HCl :

i

ii

iii

## PART 2: LABORATORY

## ANSWER ANY FOURTEEN (14) OF THE SIXTEEN (16) TRUE / FALSE QUESTIONS

 9-24.Questions 9-24 are based on the laboratory component of Chem 353. In each case decide whether the statements are true or false. If the statement is true select " $A$ ", if it is "false" then select " $B$ "

Questions 9-12 are from the experiment about the hydrolysis of sucrose.
9. Sucrose is an example of a monosaccharide.
10. Specific rotation, $[\alpha]=\alpha / \mathrm{cL}$ where $\alpha=$ observed rotation, $\mathrm{c}=$ concentration in $\mathrm{g} / \mathrm{mL}$ and $\mathrm{L}=$ path length measured in dm .
11. The carbon atom indicated in the following diagram is an example of an anomeric carbon atom.

12. Rate of reaction $=k_{1}[A]$ and rate of reaction $=k_{2}[A]^{2}$ are both examples of reactions that are first order.

Questions 13-16 are from the experiment about the chemistry of alcohols.
13. Dehydration of alcohols in concentrated acid follows a reactivity trend characteristic of a mechanism involving carbocations.
14. The insoluble product formed in the Lucas test (reagents $=\mathrm{ZnCl}_{2} / \mathrm{HCl}$ ) is an alkyl chloride.
15. Tertiary alcohols are not oxidised by chromium reagents.
16. 2,4-dinitrophenylhydrazine reacts with the carbonyl group in ketones to give a yellow to red precipitate.

Questions 17-20 are from the experiment about polymers and plastics.
17. Nylon [6.6] is can be made using the reaction of the following reagents:

18. When a "condensation polymer" is formed, a small molecule such as water is also formed, hence the term "condensation".
19. In a reflux apparatus, the vertical condenser is normally cooled with a steady flow of cold water.
20. The following structure shows an amide functional group:


Questions 21-24 are from the experiment about the synthesis of benzoic acid.
21. Grignard reagents are examples of organomagnesium compounds.
22. The role of the iodine was to react with the bromobenzene to make iodobenzene in order to make the aryl halide system more reactive.
23. The "work-up" step involved adding water and acid in order to neutralise the strongly basic conditions.
24. A cryogen is a material that can causes burns to the skin due to being very cold.

## PART 3: STARTING MATERIALS, REAGENTS AND PRODUCTS

12\% ANSWER ANY SIX (6) OF QUESTIONS 25-31.
For each of questions 25-31 select the MISSING component (the starting material, the product or the reagents) required in order to BEST complete each of the reaction schemes.
25.



A


B


C


D


E
26.



A


B


C


D


E
27.


A

B

C

D

E
28.

$$
? \longrightarrow
$$


A 1. ethyne, $\mathrm{NaNH}_{2}$
2. 1-bromopentane
3. $\mathrm{H}_{3} \mathrm{O}+, \mathrm{HgSO}_{4}$
B 1. propyne, $\mathrm{NaNH}_{2}$
2. 1-bromobutane
3. $\mathrm{H}_{3} \mathrm{O}+, \mathrm{HgSO}_{4}$
C 1. 1-butyne, $\mathrm{NaNH}_{2}$
2. 1-bromopropane
3. $\mathrm{H}_{3} \mathrm{O}+, \mathrm{HgSO}_{4}$
D 1. 1-pentyne, $\mathrm{NaNH}_{2}$
2. bromoethane
3. $\mathrm{H}_{3} \mathrm{O}+, \mathrm{HgSO}_{4}$
E 1. 1-hexyne, $\mathrm{NaNH}_{2}$
2. bromomethane
3. $\mathrm{H}_{3} \mathrm{O}+, \mathrm{HgSO}_{4}$
29.


A 1. HBr 2. excess $\mathrm{NaNH}_{2}$
B 1. $\mathrm{Br}_{2}$ 2. excess $\mathrm{NaNH}_{2}$
D 1. aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$
2. $\mathrm{H}_{2} \mathrm{SO}_{4} /$ heat

C $\mathrm{H}_{2}$ / Lindlar's catalyst
E $\mathrm{H}_{2} \mathrm{SO}_{4}$ / heat

The last two questions both apply to the following reaction scheme:

30.

A

B

C

D

E
AB
31.


A


B


C


D


E


AB

## PART 4: REGIOCHEMISTRY and STEREOCHEMISTRY OF REACTIONS

ANSWER ANY FIVE (5) OF QUESTIONS 32-37.
For each of the questions $32-37$, select the structure required to complete the reaction shown. If two products are equally abundant, then you must indicate both for full marks. If two starting materials will give the same product, then you must indicate both for full marks. In order to indicate more than one structure, blacken the spaces corresponding to each one.
32.




C

D

33.




A


B


C


D


E
34.


35.



A


B


C


D


E
36.

37.


(50:50 of these enantiomers)

A

B

C

D

E

## PART 5: AROMATICITY AND RESONANCE

14\% ANSWER ANY SEVEN (7) of the questions 38-45.

## 



B


AD


C


AE


D


BC


E


CD


AB


CE


AC



DE

For each of the questions $38-45$ select a single compound from the list above that best matches each of the following descriptions:
38. Non-aromatic as drawn with $4 \pi$-electrons.
39. A non-conjugated molecule.
40. A non-aromatic, conjugated triene.
41. Non-aromatic as drawn but has an aromatic tautomer.
42. An aromatic system where $\mathrm{n}=2$ in the Huckel rule.
43. The most acidic hydrocarbon (since the resultant conjugate base is aromatic).
44. An aromatic system where $n=1$ in the Huckel rule that also has an aromatic conjugate acid.
45. Non-aromatic as drawn, but would react rapidly with an acid to give an aromatic carbocation.

## PART 6: MECHANISMS

ANSWER ANY TWO (2) OF QUESTIONS A - C

## WRITE YOUR ANSWER IN THE BOOKLET PROVIDED

Draw curly arrow mechanisms to explain any two (2) of the following reactions / observations. No other reagents are required.
A. Show the mechanism for the following reaction sequence:


B Show the mechanism for the following reaction and rationalise the regiochemistry:


C Show the mechanism for the following reaction:


## PART 7: SYNTHESIS

12\% WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED.
DO NOT SHOW MECHANISMS.
Using any of the starting materials shown, design efficient syntheses of any THREE (3) of the following molecules.








Allowed starting materials and reagents

inorganic reagents
any hydrocarbons with 4 or less $C$ atoms

You may use any solvents you wish (but they can not become part of the structure, i.e. they can be used as solvents not as starting materials or reagents)

## PART 8: STRUCTURE DETERMINATION

## WRITE YOUR ANSWER IN THE BOOKLET PROVIDED

Use the information in the following paragraph to answer the questions below.

A sample of $\mathbf{A}, \mathrm{C}_{5} \mathrm{H}_{8}$, IR: $2120 \mathrm{~cm}^{-1}$, was reacted with sodium amide then treated with n-propyl bromide to give $\mathbf{B}, \mathrm{C}_{8} \mathrm{H}_{14}$. $\mathbf{B}$ was then reacted with hydrogen / Lindlar's catalyst to give $\mathbf{C}, \mathrm{C}_{8} \mathrm{H}_{16}$ that gave a colourless solution when tested with $\mathrm{Br}_{2}$ in chloroform. Reaction of $\mathbf{C}$ with aq. alkaline $\mathrm{KMnO}_{4}$, gave $\mathbf{D}, \mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{2}$ as a pair of enantiomers, IR: $3500 \mathrm{~cm}^{-1}$ (very broad).

In contrast, when A was reacted with sodium amide then treated with isopropyl bromide, it gave E, a constitutional isomer of B. When E was reacted with hydrogen / Lindlar's catalyst it gave F, a constitutional isomer of C. Reaction of $\mathbf{F}$ with aq. alkaline $\mathrm{KMnO}_{4}$, it gave $\mathbf{G}, \mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{2}$, IR: $3500 \mathrm{~cm}^{-1}$ (very broad) as a single meso compound. In contrast, reaction of F with $\mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H}$ followed by treatment with dilute aqueous acid gave $\mathbf{H}$ as a pair of enantiomers that were found to be diastereomers of $\mathbf{G}$.

When E was reacted with sodium in liquid ammonia, it gave I, a stereoisomer of F. Reaction of I with aq. alkaline $\mathrm{KMnO}_{4}$, gave the $\mathbf{H}$ (as a pair of enantiomers again), while reaction of I with $\mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H}$ followed by treatment with dilute aqueous acid gave G.

Reaction of F or I with ozone followed by a work-up using hydrogen peroxide gave 2-methylpropanoic acid as the only product.

- What are the structures of $\mathbf{A}$ to I ?
- What type of isomer is D to G and to H ?

