UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

MIDTERM EXAMINATION
CHEMISTRY 353
WEDNESDAY MARCH 7th, 2012
Time: 2 Hours

PLEASE WRITE YOUR NAME AND FULL STUDENT I.D. NUMBER ON BOTH YOUR COMPUTER ANSWER SHEET and on the ANSWER BOOKLET provided.

READ ALL THE INSTRUCTIONS CAREFULLY

The exam consists of Parts 1-7, each of which should be attempted. Note that some Parts provide you with a choice of questions, e.g. answer any 5 out of 6 . These will be graded in numerical order until the required number have been completed, regardless of whether they are right or wrong. Parts $1-4$ will be computer graded, and Parts 5, 6 and 7 are to be answered IN THE BOOKLET PROVIDED. A periodic table with atomic numbers and atomic weights and spectroscopic data tables are included with this examination paper.

Parts 1-4 consist of a series of multiple choice questions numbered 1-34 which are to be answered on the computer answer sheet. Indicate your answer by blackening out the appropriate space, A, B, C, D or E on the answer sheet. Use a soft pencil only and not ink. In some cases it is required that you indicate multiple items for a complete and/or correct answer by blackening out more than one space. In some other cases more than five options are available and some of these also require more than one space to be blackened out. For an example, an option specified as $A B$ requires that you blacken out both space A and space B. Part marks may be awarded in some of the questions. Incorrect answers must be erased cleanly.

Molecular models are permitted during the exam; calculators are also permitted, but NOT programmable calculators. Absolutely no other electronic devices are allowed.

PART 1: RELATIVE PROPERTIES

16\% ANSWER ANY EIGHT (8) OF QUESTIONS 1-10.

Arrange the items in each of the questions in this section in DECREASING ORDER (i.e. greatest first) with respect to the indicated property.

Use the following code to indicate your answers.
A. $\quad \mathrm{i}>\mathrm{ii}>\mathrm{iii}$
D. $\quad \mathrm{ii}>\mathrm{iii}>\mathrm{i}$
B. $\quad \mathrm{i}>\mathrm{iii}>\mathrm{ii}$
E. \quad iii $>\mathrm{i}>\mathrm{ii}$
C. \quad ii $>\mathrm{i}>\mathrm{iii}$
AB. \quad iii $>\mathrm{ii}>\mathrm{i}$

1. The relative reactivity of each of the following towards HBr :

i

ii

iii
2. The relative number of the vinylic hydrogens in each of the following:

i

ii

iii
3. The relative stability of the following carbocations:

i

ii

iii
4. The relative reactivity towards methyl acrylate of each of the following:

i

ii

iii

methyl acrylate
5. The relative yield of 1 -methylcyclopentene reacting with $\mathrm{HBr} /$ peroxides:

ii

iii

Use the following code to indicate your answers.

A. $\quad \mathbf{i}>\mathbf{i i}>\mathbf{i i i}$
D. \quad ii $>$ iii $>$ i
B. $\quad \mathrm{i}>\mathrm{iii}>\mathrm{ii}$
E. $\quad \mathrm{iii}>\mathrm{i}>\mathrm{ii}$
C. \quad ii $>\mathrm{i}>\mathrm{iii}$
AB. \quad iii $>\mathbf{i i}>\mathbf{i}$
6. The pK_{a} 's of the most acidic hydrogen in each of the following:

i

ii

iii
7. The relative reactivity of each of the following towards H_{2} / Pt :

i

ii

iii
8. The relative yields of $(Z)-2$-pentene reacting with cold KMnO_{4} in aqueous KOH :
(2R,3S)-pentane-2,3-diol (S)-pentane-1,3-diol (2S,3S)-pentane-2,3-diol
i
ii
iii
9. The relative reactivity of the following when heated with potassium tert-butoxide

i

ii

iii
10. The number of possible mono-alkene starting materials that could result in the following products upon hydrogenation:

i

ii

iii

PART 2: STARTING MATERIALS, REAGENTS AND PRODUCTS

14\% ANSWER ANY SEVEN (7) OF QUESTIONS 11-18.

For each of questions 11-18 select the MISSING component (the starting material, the product or the reagents) required in order to BEST complete each of the reaction schemes.
11.

A

B

C

D

E
12.

A

B

C

D

E
13.

$\begin{array}{llll}\text { A 1. } \mathrm{NaNH}_{2} & \text { 2. methylbromide } & \text { 3. } \mathrm{NaNH}_{2} & \text { 4. ethyliodide } \\ \text { 5. } \mathrm{H}_{2} \text {, Lindlar's cat. }\end{array}$

B 1. NaNH_{2}
C 1. NaNH_{2}
D 1. NaNH_{2}
E 1. NaNH_{2}
2. ethylbromide
3. NaNH_{2}
4. ethyliodide
5. $\mathrm{Na}, \mathrm{NH}_{3}$
2. ethylbromide
3. NaNH_{2} 4. methyliodide 5. $\mathrm{Na}, \mathrm{NH}_{3}$
2. ethylbromide 3 3. $\mathrm{Na}, \mathrm{NH}_{3}$ 4. methylbromide 5 . H_{2}, Lindlar's cat. 2. methylbromide 3. H_{2}, Lindlar's cat. 4. NaNH_{2} 5. ethyliodide
14.

A

B

1. aq, $\mathrm{H}_{2} \mathrm{SO}_{4}$

2. $\mathrm{HBr},-80^{\circ} \mathrm{C}$
3. $\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{Zn}(\mathrm{Cu})$

C

D

E
15.

A 1. Br_{2} 2. Potassium tert-butoxide, heat
B 1. HBr , dark, N_{2} 2. N -bromosuccinimide, CHCl_{3} 3. NaOEt , EtOH , heat
C 1. N -bromosuccinimide, $\mathrm{CHCl}_{3} \quad$ 2. Br_{2} 3. Potassium tert-butoxide, heat
D 1. HBr , peroxides 2. $\mathrm{NaOEt}, \mathrm{EtOH}$, heat $3 . \mathrm{Br}_{2}$ 4. NaOEt , EtOH , heat
E 1. N-bromosuccinimide, CHCl_{3} 2. HBr , peroxides 3 . NaOEt , EtOH , heat
16.

$\mathrm{HO}_{2} \mathrm{C} \mathrm{CO}_{2} \mathrm{H}$
C
$\mathrm{OHC} \sim_{\mathrm{CHO}}$
D
$\mathrm{HO}_{2} \mathrm{C}=\mathrm{CO}_{2} \mathrm{H}$
E
17.

A

B

C

D

E
18.

PART 3: REGIOCHEMISTRY and STEREOCHEMISTRY OF REACTIONS
18\% ANSWER ANY SIX (6) OF QUESTIONS 19-25.
For each of the questions 19-25, select the structure required to BEST complete the reaction shown.
19.

B

D

E
20.

C

21.

A

B

C

D

E
22.

A

B

C

D

E
23.

A

B

C

D

E
24.

25.

16\% ANSWER ANY EIGHT (8) of the questions 26-34.
For each of the questions 26-34 select the appropriate answer from the answers provided. In some cases more than one selection may be required for full credit.
26. Which of the following molecules contain conjugated systems?
(select all that apply)

A

B

C

D

E
27. Which of the following systems are resonance contributors of the carbocation shown below ? (select all that apply)

A

B

$+\mathrm{C}$

D

E
28. Which of the following isomers is the least stable as drawn ?

A

B

C

D

E
29. Which of the following isomers has the least exothermic heat of hydrogenation ?

A

B

C

D

E
30. Which of the following systems are resonance contributors of cyclohexanone? (select all that apply)

31. Which of the following systems would be the most reactive towards $\mathrm{Na} / \mathrm{NH}_{3}$?

A

B

C

D

E
32. Which of the following systems would be the most reactive towards HCl ?

A

B

C

D

E
33. Which of the following molecules is the s-cis form of (3E)-2-methylpenta-1,3diene?

B

C

D

34. Which of the following systems are resonance contributors of the radical shown below ? (select all that apply)
$\xrightarrow{\longrightarrow}$?

A

B

C

D

E

PART 5: MECHANISMS

10\% ANSWER TWO (2) QUESTIONS, ONE FROM PART A and ONE FROM PART B WRITE YOUR ANSWER IN THE BOOKLET PROVIDED

Draw curly arrow mechanisms to explain the following reactions / observations.
No other reagents are required.
A. Show the mechanism for one of the following reactions:

OR

AND
B. Show the mechanism for one of the following reactions:

OR

PART 6: SYNTHESIS

15\% ANSWER A TOTAL OF THREE (3) QUESTIONS, ONE FROM A, ONE FROM B AND ONE FROM C.

WRITE YOUR ANSWERS IN THE BOOKLET PROVIDED.
Design an efficient synthesis for any THREE (3) of the following target molecules
SHOW YOUR ANSWER AS A STEPWISE REACTION SCHEME SHOWING THE REAGENT REQUIRED AND PRODUCT OF EACH STEP

DO NOT SHOW MECHANISMS (i.e. curly arrows are NOT required)
Allowed starting materials and reagents:

- Any hydrocarbons with 3 or less \mathbf{C} atoms
- You may use any solvents or reagents that do not contribute carbon atoms to the final structure.

A

or

B
 Or

C

or

PART 7: STRUCTURE DETERMINATION

WRITE YOUR ANSWER IN THE BOOKLET PROVIDED

Use the information in the following paragraph to answer the questions below.

Compound $\mathbf{A}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)$, was reacted with H_{2} over Lindlar's catalyst to give $\mathbf{B}\left(\mathrm{C}_{8} \mathrm{H}_{16}\right)$. When B was reacted with aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$ C \mathbf{C} was obtained ($\mathrm{IR}=3500 \mathrm{~cm}^{-1}$, brd) as the major product. Subsequent reaction of \mathbf{C} with $\mathrm{H}_{2} \mathrm{SO}_{4}$ / heat gave a mixture of two products, D (major) and \mathbf{E} (minor). Reaction of either \mathbf{D} or \mathbf{E} with O_{3} followed by work up with zinc in acid gave a single product, butan-2-one. Reaction of $\mathbf{A}, \mathbf{B}, \mathbf{D}$ or \mathbf{E} with H_{2} over Pd gave the same alkane, $\mathrm{C}_{8} \mathrm{H}_{18}$. When D was reacted with Br_{2} in chloroform, an optically inactive compound was obtained while \mathbf{E} gave a pair of enantiomers.

When \mathbf{A} was reacted with aq. $\mathrm{HgSO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}$, a single compound $\mathbf{F}\left(\mathrm{IR}=1715 \mathrm{~cm}^{-1}\right)$ was obtained, while when \mathbf{A} was reacted with 9 -borabicyclononane (i.e. 9-BBN) followed by aq. $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}_{2}$ it gave an isomer of \mathbf{F} that had a H -NMR peak at about 9.5 ppm .

Draw the structures of A to F.
Give the complete IUPAC name for D.
Why is the product of the reaction of D with Br_{2} optically inactive ?

*** THE END ***

CCL / IRH / W12

SPECTROSCOPIC TABLES

${ }^{13} \mathrm{C}$ NMR

${ }^{13} \mathrm{C}$ NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm

$\begin{gathered} -\mathrm{CH}_{3} \\ 0-30 \end{gathered}$			
$\begin{gathered} -\mathbf{C} \equiv \mathbf{C}- \\ 65-90 \end{gathered}$			
110-170			

INFRA-RED GROUP ABSORPTION FREQUENCIES

(1) $s=$ strong, $m=$ medium and $w=$ weak
(2) note that the -OH absorption of solid carboxylic acids which run as a nujol mull can be difficult to see as they maybe very broad.

PERIODIC TABLE

1																	
1A																	8A
H	2											13	14	15	16	17	${ }^{\text {He }}$
$\stackrel{1.008}{1}$	2A											3A	4A	5A	6A	7A	$\stackrel{4}{4.003}$
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	${ }^{20}$	${ }^{21}$	${ }^{22}$	${ }^{23}$	${ }^{24}$	${ }^{25}$	${ }^{26}$	27	${ }^{28}$	${ }^{29}$	${ }^{30}$	${ }^{31}$	32	${ }^{33}$	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	${ }^{43}$	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57*	${ }^{72}$	73	${ }^{74}$	75	${ }^{76}$	77	78	79	${ }^{80}$	${ }^{81}$	${ }^{82}$	83	84	${ }^{85}$	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89**	104	105	106	107	108	109	110	111							
Fr	Ra	Ac	Rf	На	Sg	Ns	Hs	Mt	Uun	Uuu							
(223)	226.0	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)							

Lanthanides *	58	59	${ }^{60}$	${ }^{61}$	${ }^{62}$	${ }^{63}$	64	${ }^{65}$	${ }^{66}$	${ }^{67}$	${ }^{68}$	${ }^{69}$	70	${ }^{71}$
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Actinides **	90	91	${ }^{92}$	93	94	95	96	97	98	99	100	${ }^{01}$	${ }^{02}$	${ }^{103}$
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

