UNIVERSITY OF CALGARY

FACULTY OF SCIENCE
MIDTERM EXAMINATION
CHEMISTRY 353
THURSDAY MARCH 7th, 2019

Time: 2 Hours

READ ALL THE INSTRUCTIONS CAREFULLY

PLEASE WRITE YOUR NAME, STUDENT I.D. NUMBER ON BOTH YOUR BLUE BOOKLET AND OPTICAL SCORE ANSWER SHEET. ENTER VERSION NUMBER 1 ON THE OPTICAL SCORE ANSWER SHEET

The exam consists of Parts 1-7, each of which should be attempted. Note that some Parts provide you with a choice of questions, e.g. answer any 5 out of 6 . These will be graded in numerical order until the required number have been completed, regardless of whether they are right or wrong. Parts 1 - 4 will be computer graded, and Parts 5, 6 and 7 are to be answered IN INK IN THE BLUE BOOKLET PROVIDED. A periodic table (with atomic numbers and atomic weights) and spectroscopic data tables are included with this examination paper.

Parts 1-4 consist of a series of multiple choice questions numbered 1-34 which are to be answered on the optical score answer sheet. Indicate your answer by blackening out the appropriate space(s), A, B, C, D or E on the answer sheet. Use a soft / dark pencil only and not ink. In some cases it is required that you indicate multiple items for a complete and/or correct answer by blackening out more than one space. In some other cases more than five options are available and some of these also require more than one space to be blackened out. For an example, an option specified as $A B$ requires that you blacken out both space A and space B. Part marks may be awarded in some of the questions. Incorrect answers must be erased cleanly.

Molecular models are permitted during the exam; calculators are also permitted, but NOT programmable calculators. Absolutely no other electronic devices are allowed.

ANSWER ANY EIGHT (8) OF QUESTIONS 1-10.

Arrange the items in each of the questions in this section in DECREASING ORDER (i.e. greatest first) with respect to the indicated property.

Use the following code to indicate your answers.
A. \quad i $>$ ii $>$ iii
D. $\quad \mathrm{ii}>\mathrm{iii}>\mathrm{i}$
B. $\quad \mathrm{i}>\mathrm{iii}>\mathrm{ii}$
E. \quad iii $>\mathrm{i}>\mathrm{ii}$
C. \quad ii $>\mathrm{i}>\mathrm{iii}$
AB. $\quad \mathrm{iii}>\mathrm{ii}>\mathrm{i}$

1. The relative reactivity of each of the following towards HCl :

i

ii

iii
2. The relative acidity of the most acidic \mathbf{H} atom in each of the following:
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
i
$\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3}$
ii
$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{3}$
iii
3. The specific rotations of each of the following molecules given that ($2 R, 3 R$)-butan-2,3-diol has an $[\alpha]_{D}=-13.2^{\circ}$:

iii

4. The relative stability of each of the following isomers:

i

ii

iii
5. The relative strengths of the indicated CC bonds:

(c) Dept of Chemistry, University of Calgary

Use the following code to indicate your answers.

A. $\quad \mathbf{i}>\mathbf{i i}>$ iii
D. \quad ii $>\mathrm{iii}>$ i
B. $\quad \mathrm{i}>\mathrm{iii}>\mathrm{ii}$
C. \quad ii $>\mathrm{i}>\mathrm{iii}$
E. \quad iii $>\mathrm{i}>\mathrm{ii}$
AB. \quad iii $>\mathrm{ii}>\mathbf{i}$
6. The relative yields of a methyl ketone from the reactions of each of the following with (1) $\mathrm{BH}_{3} / \mathrm{THF}$ then (2) aq. $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NaOH}$:

a methyl ketone
$\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3}$
i

ii

$$
\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}\left(\mathrm{CH}_{3}\right)_{2}
$$

iii
7. The relative rate of reaction of each of the following with hydrogen / palladium:

ii

iii
8. The relative stability of the following carbocations:

i

ii

iii
9. The relative yields of each of the following products from the reaction of 1 -cyclohexylprop-1-ene with BH_{3} followed by the normal work-up with aq. $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}_{2}$:

10. The relative yield of hexan-1-ol from the reaction of hex-1-ene with each of the following :
aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$

1. $\mathrm{BH}_{3} / \mathrm{THF}$
2. $9-\mathrm{BBN} / \mathrm{THF}$
3. aq. $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NaOH}$
4. aq. $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NaOH}$
i
ii
iii

PART 2: STARTING MATERIALS, REAGENTS AND PRODUCTS
ANSWER ANY SEVEN (7) OF QUESTIONS 11-18.
For each of questions 11-18 select the MISSING component (the starting material, the product or the reagents) required in order to BEST complete each of the reaction schemes.
11.

A

B

C

D

E
12.

13.

1) H_{2}, Lindlar's catalyst
2) HBr , peroxides, heat

A

B

C

D

E
14.

1) Br_{2}, light
2) HBr
3) $B r_{2}$, light
4) KOtBu
5) NBS, heat
6) $\mathrm{NaOMe}, \mathrm{MeOH}$
7) NaOtBu , heat
8) NaOtBu , heat
9) $m C P B A$
10) $m C P B A$
11) aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat
12) $\mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H}$
13) HOBr
14) HBr
15) HBr

A
B
C
D
(c) Dept of Chemistry, University of Calgary
15.

16.

1) excess NaNH_{2}
2) NaOMe
3) $\mathrm{O}_{3}, \mathrm{PPh}_{3}$
4) excess NaNH_{2}
5) NaOMe
6) aq. $\mathrm{KMnO}_{4}, \mathrm{NaOH}$
7) NaNH_{2}
cold $\left(0^{\circ} \mathrm{C}\right)$
8) O_{3}
9) Zn , acetic acid
10) NaNH_{2}
11) $\mathrm{Na}, \mathrm{NH}_{3}$
12) O_{3}
13) $\mathrm{H}_{2} \mathrm{O}$
14) NaNH_{2}
15) $\mathrm{HgSO}_{4}, \mathrm{H}_{2} \mathrm{O}$
A
B
C
D
E
17.

A

B

C

D

E
18.

A

B

C

D

E
(c) Dept of Chemistry, University of Calgary

For each of the questions 19-25, select the MISSING component (the starting material, the product or the reagents) required in order to BEST complete each of the reaction schemes.
19.

1) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$
2) Br_{2}
Br_{2}
3) H_{2} Lindlar's catalyst
4) $\mathrm{HgSO}_{4}, \mathrm{H}_{3} \mathrm{O}^{+}$
5) $\mathrm{Na} / \mathrm{NH}_{3}$
6) Br_{2}
7) Br_{2}
8) Br_{2}
A
B

C

D
E
20.

1) $\mathrm{Mg} / \mathrm{THF}$

2) $\mathrm{H}_{3} \mathrm{O}^{+}$

A

B

C

D

E
21.

1) $\mathrm{NaNH}_{2}, \mathrm{Mel}$

2) H_{2}, Lindlar's catalyst
3) KMnO_{4}, aq. NaOH

A

B

C

D

E
22.

3. $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}^{+}$

A

B

C

D

E
23.

A

B

C

D

E
24.

A

B

C

D
25.

A

B

C

D

E
(c) Dept of Chemistry, University of Calgary

ANSWER ANY EIGHT (8) of the questions 26-34.
For each of the questions $26-34$ select the appropriate answer from the answers provided. In some cases more than one selection may be required for full credit.
26. Which of the following contain conjugated systems? (select all that apply)

A

B

C

D

E
27. Which of the following systems are resonance contributors of the cation shown to the right?

(select all that apply)

A

B

\oplus
C

D

E
28. Which of the following systems would be the most reactive towards HCl ?

A

B

C

D

E
29. Which of the following isomers is the most stable as drawn?

A

B

C

D

E
30. Which of the following molecules show the s-cis form of (3E)-2-methylpenta-1,3diene ? (select all that apply)

A

B

C

D

E
31. Which of the following systems are tautomers of pentan-3-one ? (select all that apply)

A

B

C

D

E
32. Which of the following best represents a step in the mechanism of the reaction of propene with HBr / uv light?

33. Which of the following molecules would be named as cis ? (select all that apply)

A

B

C

D

E
34. Which of the following systems are resonance contributors of the cation shown below ? (select all that apply)

(c) Dept of Chemistry, University of Calgary

ANSWER TWO (2) QUESTIONS, ONE FROM PART A and ONE FROM PART B

WRITE YOUR ANSWER IN THE BOOKLET PROVIDED

Draw curly arrow mechanisms to explain the following reactions / observations.
No other reagents are required.
A. Show the mechanism for one of the following reactions:

OR

AND
B. Show the mechanism for one of the following reactions to give the major product and briefly justify the product formation :

OR

2. $\mathrm{H}_{2} \mathrm{O}_{2}$ / aq. NaOH

ANSWER THREE (3) QUESTIONS, ONE FROM A, ONE FROM B AND ONE FROM C.

WRITE YOUR ANSWERS IN THE BLUE BOOKLET PROVIDED.

Design an efficient synthesis for THREE (3) of the following target molecules
SHOW YOUR ANSWER AS A STEPWISE REACTION SCHEME SHOWING THE REAGENT REQUIRED AND PRODUCT OF EACH STEP.

DO NOT SHOW MECHANISMS (i.e. curly arrows are NOT required)
Allowed starting materials and reagents :
Any hydrocarbons with 4 or less C atoms

Any solvents or reagents that do not contribute carbon atoms to the final structure.

A

or

B

or

C

or

11\%

PART 7: STRUCTURE DETERMINATION

WRITE YOUR ANSWER IN THE BLUE BOOKLET PROVIDED

Use the information in the following paragraph to answer the questions below.

A sample of hydrocarbon $\mathbf{A}, \mathrm{C}_{5} \mathrm{H}_{8}$, IR: $2120 \mathrm{~cm}^{-1}$, was reacted with sodium amide then treated with isopropyl bromide to give $\mathbf{B}, \mathrm{C}_{8} \mathrm{H}_{14}$. \mathbf{B} was then reacted with hydrogen / Lindlar's catalyst to give $\mathbf{C}, \mathrm{C}_{8} \mathrm{H}_{16}$ that gave a colourless solution when tested with Br_{2} in chloroform. Reaction of \mathbf{C} with cold aq. alkaline KMnO_{4}, gave $\mathbf{D}, \mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{2}$ as a single meso compound, IR: $3500 \mathrm{~cm}^{-1}$ (very broad), 13C-NMR δ / ppm : 75, 30, and 17.

In contrast, when \mathbf{B} was reacted with sodium in liquid ammonia, it gave \mathbf{E}, a stereoisomer of \mathbf{C}. Reaction of \mathbf{E} with cold aq. alkaline KMnO_{4}, it gave $\mathbf{F}, \mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{2}$ as a racemic mixture of a pair of enantiomers that were subsequently found to be diastereomers of \mathbf{D}.

When \mathbf{B} was reacted with aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HgSO_{4} it gave a single compound \mathbf{G}, $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}$, IR: $1711 \mathrm{~cm}^{-1}, 13 \mathrm{C}-\mathrm{NMR} 8 / \mathrm{ppm}: 215,50,41,24,23$ and 18.

Reaction of \mathbf{C} or \mathbf{E} with ozone followed by a work-up using hydrogen peroxide gave 2methylpropanoic acid as the only product.

- What are the structures of A to G ?
- Provide a systematic IUPAC name for \mathbf{C}.

*** THE END ***

IRH / DD / W19

SPECTROSCOPIC TABLES

${ }^{1}$ H NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm

	methy $-\mathrm{CH}_{3}$	methylene $-\mathrm{CH}_{2}{ }^{-}$	methyne $-\stackrel{1}{\mathrm{C}} \mathrm{H}$	other	
$\mathrm{R}-\mathrm{C}-$	0.9	1.4	1.5	$\mathrm{sp}^{3} \mathrm{C}-\mathrm{OH}$	1-5
				$\mathrm{sp}^{3} \mathrm{C}-\mathrm{NH}$	1-3
	1.6	2.3	2.6	$\mathrm{C} \equiv \mathrm{CH}$	2.5
	2.1	2.4	2.5		4.5-6.5
$\mathrm{R}-\mathrm{N}^{\prime}$	2.2	2.5	2.9		6.5-8
	2.3	2.7	3.0		9-10
$\mathrm{R}-\mathrm{Br}$	2.7	3.3	4.1	O	
$\mathrm{R}-\mathrm{Cl}$	3.1	3.4	4.1		9-12
R-O-	3.3	3.4	3.7		

${ }^{13} \mathrm{C}$ NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm

$\begin{gathered} -\mathrm{CH}_{3} \\ 0-30 \end{gathered}$			
$\begin{gathered} \text { C } \equiv \mathbf{C}- \\ 65-90 \end{gathered}$			
110-170			
			$\begin{aligned} & -\mathrm{C} \equiv \mathrm{~N} \\ & 110-140 \end{aligned}$

INFRA-RED GROUP ABSORPTION FREQUENCIES

(1) $s=$ strong, $m=$ medium and $w=$ weak
(2) note that the - OH absorption of solid carboxylic acids which run as a nujol mull can be difficult to see as they maybe very broad.

PERIODIC TABLE

1																	18
1A																	8A
${ }^{1}$	2											13	14	15	16	17	2 He
$\stackrel{\text { H }}{1.008}$	2A											3A	4A	5A	6A	7A	${ }_{4.003}^{\mathrm{He}}$
3	${ }_{4}^{4}$											5	${ }^{6}$	7	${ }^{8}$	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
${ }^{11}$	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	\mathbf{P}	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	${ }^{20}$	${ }^{21}$	22	${ }^{23}$	${ }^{24}$	25	${ }^{26}$	27	${ }^{28}$	${ }^{29}$	30	${ }^{31}$	${ }^{32}$	${ }^{33}$	${ }^{34}$	${ }^{35}$	36
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	${ }^{41}$	42	${ }^{43}$	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57*	${ }^{72}$	73	74	75	76	77	78	79	80	${ }^{81}$	82	${ }^{83}$	${ }^{84}$	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89**	104	105	106	107	108	109	110	111							
$\begin{gathered} \mathbf{F r} \\ (223) \end{gathered}$	$\begin{array}{\|c} \mathbf{R a} \\ 226.0 \\ \hline \end{array}$	Ac (227)	$\mathbf{R f}$	$\underset{(262)}{\mathrm{Ha}}$	$\underset{(263)}{\mathbf{S g}}$	$\xrightarrow[\substack{\text { Ns } \\ \text { (262) }}]{\text { N }}$	$\underset{\text { (265) }}{\text { Hs }}$	$\underset{(266)}{\mathbf{M t}}$	Uun (269)	Uuu (272)							

Lanthanides *	58	59	${ }^{60}$	${ }^{61}$	${ }^{62}$	${ }^{63}$	64	${ }^{65}$	${ }^{66}$	${ }^{67}$	${ }^{68}$	${ }^{69}$	70	${ }^{71}$
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Actinides **	90	91	${ }^{92}$	93	94	95	96	97	98	99	100	${ }^{01}$	${ }^{02}$	${ }^{103}$
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

