UNIVERSITY OF CALGARY

FACULTY OF SCIENCE
MIDTERM EXAMINATION

CHEMISTRY 353
THURSDAY MARCH 10th, 2022

Time: 2 Hours

READ ALL THE INSTRUCTIONS CAREFULLY

PLEASE WRITE YOUR NAME, STUDENT I.D. NUMBER ON BOTH YOUR BLUE BOOKLET AND OPTICAL SCORE ANSWER SHEET. ENTER VERSION NUMBER 1 ON THE OPTICAL SCORE ANSWER SHEET

The exam consists of Parts 1-7, each of which should be attempted. Note that some Parts provide you with a choice of questions, e.g. answer any 5 out of 6 . These will be graded in numerical order until the required number have been completed, regardless of whether they are right or wrong. Parts 1-4 will be computer graded, and Parts 5, 6 and 7 are to be answered IN BLUE OR BLACK INK IN THE BLUE BOOKLET PROVIDED. A periodic table (with atomic numbers and atomic weights) and spectroscopic data tables are included with this examination paper.

Parts 1-4 consist of a series of multiple choice questions numbered 1-34 which are to be answered on the optical score answer sheet. Indicate your answer by blackening out the appropriate space(s) A, B, C, D or E on the answer sheet. Use a soft / dark pencil only and not ink. In some cases it is required that you indicate multiple items for a complete and/or correct answer by blackening out more than one space. In some other cases more than five options are available and some of these also require more than one space to be blackened out. For an example, an option specified as AB requires that you blacken out both space A and space B. Part marks may be awarded in some of the questions. Incorrect answers must be erased cleanly.

Molecular models are permitted during the exam; calculators are also permitted, but NOT programmable calculators. Absolutely no other electronic devices are allowed.

PART 1: RELATIVE PROPERTIES

ANSWER ANY EIGHT (8) OF QUESTIONS 1-10.

Arrange the items in each of the questions in this section in DECREASING ORDER (i.e. greatest first) with respect to the indicated property.

Use the following code to indicate your answers.
A. $\quad \mathrm{i}>\mathrm{ii}>\mathrm{iii}$
D. $\quad \mathrm{i}>\mathrm{iii}>\mathrm{i}$
B. \quad i $>\mathrm{iii}>\mathrm{ii}$
E. \quad iii $>\mathrm{i}>\mathrm{ii}$
C. $\quad \mathrm{ii}>\mathrm{i}>\mathrm{iii}$
AB. \quad iii $>\mathrm{ii}>\mathrm{i}$

1. The relative reactivity of each of the following towards aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$:

i

ii

iii
2. The relative acidity of each of the following:

3. The relative stability of the following carbocations:

ii

iii
4. The relative stability of each of the following isomers:
hexa-1,5-diene
i
(2E,4E)-hexa-2,4-diene hexa-2,3-diene
ii
iii
5. The number of configurational isomers of each of the following:

(c) Dept of Chemistry, University of Calgary

Use the following code to indicate your answers.

A. $\quad \mathrm{i}>\mathrm{ii}>\mathrm{iii}$
D. \quad ii $>\mathrm{iii}>$ i
B. $\quad \mathrm{i}>\mathrm{iii}>\mathrm{ii}$
E. \quad iii $>\mathrm{i}>\mathrm{ii}$
C. \quad ii $>\mathrm{i}>\mathrm{iii}$
AB. $\quad \mathrm{iii}>\mathrm{ii}>\mathrm{i}$
6. The relative yields of pentan-2-one from each of the following reactions:

i

ii

iii
7. The number of alpha-H in each of the following:

i

ii

iii
8. The specific rotations of each of the following molecules given that (2R,3R)-butan-2,3-diol has an $[\alpha]_{\mathrm{D}}=-13.2^{\circ}$:

i

ii

iii
9. The relative reactivity towards 1,3 -butadiene of each of the following:

i

ii

10. The relative yields of each of the following from the reaction of $\mathrm{HBr} /$ dark / N_{2} with 2-methylbuta-1,3-diene at $60^{\circ} \mathrm{C}$:

ii

iii
(c) Dept of Chemistry, University of Calgary

PART 2: STARTING MATERIALS, REAGENTS AND PRODUCTS

ANSWER ANY SEVEN (7) OF QUESTIONS 11-18.

For each of questions 11-18 select the MISSING component (the starting material, the product or the reagents) required in order to BEST complete each of the reaction schemes.
11.

A $\mathrm{NaOH} /$ ethanol
B aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}+$
D aq. NaOH
E $\mathrm{CH}_{3} \mathrm{ONa} / \mathrm{CH}_{3} \mathrm{OH}$
12.

A. conc. $\mathrm{H}_{2} \mathrm{SO}_{4} /$ heat
D. 1. $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{SO}_{4}$
2. $\mathrm{NaOH} /$ heat
B. $\mathrm{HBr} /$ heat
C. NaOH / heat
E. 1. Br_{2}
2. $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu} /$ heat
13.

A

B

C

D

E

14.

A

B

C

D

1. $\mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
2. $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}$
3. $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat
(c) Dept of Chemistry, University of Calgary
4.

A. 1. aq. $\mathrm{KMnO}_{4} / \mathrm{NaOH}$
2. Na / bromoethane
B. 1. $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$
2. $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{H}_{2} \mathrm{O}$
C. 1. $\mathrm{Na} /$ bromoethane
2. $\mathrm{HgSO}_{4} / \mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{SO}_{4}$
D. 1. $\mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
E. 1. $\mathrm{H}_{2} / \mathrm{Pd}$
2. $\mathrm{HC} \equiv \mathrm{CH} / \mathrm{NaNH}_{2}$ then $\mathrm{H}_{2} \mathrm{O}$
2. O_{3} then $\mathrm{Me}_{2} \mathrm{~S}$
3. $\mathrm{H}_{2} / \mathrm{Pd}$
3. Na / bromoethane
16.

A

B

1. N-Bromosuccinimide, heat
2. $\mathrm{NaOEt}, \mathrm{EtOH}$, heat
3. $\mathrm{Cl}_{2}, 200^{\circ} \mathrm{C}$

C

D

E
4.

18.

A

B

C

D

E
(c) Dept of Chemistry, University of Calgary

PART 3: REGIOCHEMISTRY and STEREOCHEMISTRY OF REACTIONS
ANSWER ANY SIX (6) OF QUESTIONS 19-25.
For each of the questions 19-25, select the MISSING component (the starting material, the product or the reagents) required in order to BEST complete each of the reaction schemes.
19.

A

B

C

D

E
20.

1. $\mathrm{BH}_{3} / \mathrm{THF}$
2. aq. $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NaOH}$

A

B

C

D OH

21.

A

B

C

D

E
22.

A

C

D

E

AB
23.

A

B

C

D

E
24.

1. H_{2} / Lindlar's catalyst
2. diiodomethane $/ \mathrm{Zn}-\mathrm{Cu}$?

A

B

C

D

E
25.

(c) Dept of Chemistry, University of Calgary

PART 4: PI SYSTEMS

ANSWER ANY EIGHT (8) of the questions 26-34.

For each of the questions 26-34 select the appropriate answer from the answers provided. In some cases more than one selection may be required for full credit.
26. Which of the following contain conjugated systems? (select all that apply)

A

B

C

D

$$
\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}
$$

E
27. Which of the following systems are resonance contributors of the cation shown to the right?
 (select all that apply)

A

B

C

D

E
28. Which of the following isomers reacts fastest with HCl ?

29. Which of the following isomers is the least stable as drawn ?

A

B

C

D

E
30. Which of the following molecules is the s-trans form of (3Z)-3-methylpenta-1,3-diene ? (select all that apply)

A

B

C

D

E
31. Which of the CC bonds indicated is the shortest?

32. Which of the following best represents a step in the mechanism of the reaction of propene with BH_{3} ?

A

B

C

D

E
AB
33. Which of the following systems would be the most reactive towards $\mathrm{H}_{2} / \mathrm{Pd}$?

A

B

C

D

E
34. Which of the following systems are resonance contributors of the anion shown below ? (select all that apply)

A

B

C

D

E
(c) Dept of Chemistry, University of Calgary

PART 5: MECHANISMS

ANSWER TWO (2) QUESTIONS, ONE FROM PART A and ONE FROM PART B

WRITE YOUR ANSWER IN THE BOOKLET PROVIDED

Draw curly arrow mechanisms to explain the following reactions / observations. No other reagents are required.
A. Show the mechanism for one of the following reactions:

OR

Heat

Heat

AND
B. Show the mechanism for one of the following reactions to give the major product and briefly justify the product formation :

OR

PART 6: SYNTHESIS

ANSWER THREE (3) QUESTIONS, ONE FROM A, ONE FROM B AND ONE FROM C.

WRITE YOUR ANSWERS IN THE BLUE BOOKLET PROVIDED.

Design an efficient synthesis for THREE (3) of the following target molecules
SHOW YOUR ANSWER AS A STEPWISE REACTION SCHEME SHOWING THE REAGENTS REQUIRED AND PRODUCT OF EACH STEP.

DO NOT SHOW MECHANISMS (i.e. curly arrows are NOT required)
Allowed starting materials and reagents :
Any hydrocarbons with 5 or less \mathbf{C} atoms
Any solvents or reagents that do not contribute carbon atoms to the final structure.

A

or

AND

B
 or

AND

C

or

(c) Dept of Chemistry, University of Calgary

PART 7: STRUCTURE DETERMINATION

WRITE YOUR ANSWER IN THE BLUE BOOKLET PROVIDED

Use the information in the following paragraph to answer the questions below.

None of the materials A-G are chiral.
When $\mathbf{A}, \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br}$, was reacted with hot, ethanolic $\mathrm{KOH}, \mathbf{B}, \mathrm{C}_{5} \mathrm{H}_{10}$ was obtained, IR :1680 $\mathrm{cm}^{-1}(\mathrm{w})$. B gave a colourless solution when tested with Br_{2} in chloroform. Subsequent reaction of \mathbf{B} with Br_{2} under a uv lamp or with N -bromosuccinimide gave $\mathbf{C}, \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{Br}$ as the major product. When \boldsymbol{B} was reacted BH_{3} then aq. $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}_{2}$, \mathbf{D} was the major product. Reaction of \boldsymbol{D} with $\mathrm{PBr}_{3} / \mathrm{Et}_{3} \mathrm{~N}$ gave \mathbf{A} as the major product. In contrast, reaction of \mathbf{B} with aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$ gave \mathbf{E} as the major product. E spectral data : ${ }^{1} \mathrm{H}$-NMR: 1.8 ppm (broad, singlet, 1 H), 1.5 ppm (quartet, 2 H), 1.20 ppm (singlet, 6 H) and 0.9 ppm (triplet, 3 H), IR : $3500 \mathrm{~cm}^{-1}$ (very broad).

When \mathbf{C} was reacted with hot, ethanolic $\mathrm{KOH}, \mathrm{F}, \mathrm{C}_{5} \mathrm{H}_{8}$ was formed. \mathbf{F} was found to have 5 peaks in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$. When \mathbf{F} was heated in a sealed tube with ethene, it gave $\mathbf{G}, \mathrm{C}_{7} \mathrm{H}_{12}$, as the major product. G, IR : $1660 \mathrm{~cm}^{-1}, 7$ peaks in the ${ }^{13} \mathrm{C}$-NMR. G also gave a colourless solution with Br_{2} in chloroform. Subsequent reaction of G with ozone followed by hydrogen peroxide work up gave 6-oxo-heptanoic acid.

- Identify the compounds A-G (structures are sufficient)
*** THE END ***
IRH / JvH / W22

SPECTROSCOPIC TABLES

${ }^{1}$ H NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm

	$\begin{aligned} \mathbf{R}= & \text { methyl } \\ & -\mathrm{CH}_{3} \end{aligned}$	methylene $-\mathrm{CH}_{2}-$	methyne $-\stackrel{1}{\mathrm{C}} \mathrm{H}$	other	
$\mathrm{R}-\mathrm{C}-$	- 0.9	1.4	1.5	$\mathrm{sp}^{3} \mathrm{C}-\mathrm{OH}$	1-5
				$\mathrm{sp}^{3} \mathrm{C}-\mathrm{NH}$	1-3
	- 1.6	2.3	2.6	$\mathrm{C} \equiv \mathrm{CH}$	2.5
	2.1	2.4	2.5	${ }_{C}=C^{\prime}$	4.5-6.5
$\mathrm{R}-\mathrm{N}^{\prime}$	/ 2.2	2.5	2.9		6.5-8
R) 2.3	2.7	3.0		9-10
$\mathrm{R}-\mathrm{Br}$		3.3	4.1		
R-Cl	I 3.1	3.4	4.1		9-12
R-O-	- 3.3	3.4	3.7		

(c) Dept of Chemistry, University of Calgary

${ }^{13} \mathrm{C}$ NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm

$\begin{gathered} -\mathrm{CH}_{3} \\ 0-30 \end{gathered}$			
$\begin{gathered} -C \equiv C- \\ 65-90 \end{gathered}$			
110-170			
			$\begin{array}{r} -\mathrm{C} \equiv \mathrm{~N} \\ 110-140 \end{array}$

INFRA-RED GROUP ABSORPTION FREQUENCIES

	TYPE OF VIBRATION	FREQUENCY $\left(\mathrm{cm}^{-1}\right)$	WAVELENGTH (μ)	INTENSITY (1)
C-H	Alkanes (stretch)	3000-2850	3.33-3.51	s
	$-\mathrm{CH}_{3}$ (bend)	1450 and 1375	6.90 and 7.27	m
		1465	6.83	m
	Alkenes (stretch)	3100-3000	3.23-3.33	m
	(bend)	1700-1000	5.88-10.0	s
	Aromatics (stretch)	3150-3050	3.17-3.28	s
	(out-of-plane bend)	1000-700	10.0-14.3	s
	Alkyne (stretch)	ca. 3300	ca.3.03	s
	Aldehyde	2900-2800	3.45-3.57	w
		2800-2700	3.57-3.70	w
C-C	Alkane not usually useful			
$\mathrm{C}=\mathrm{C}$	Alkene	1680-1600	5.95-6.25	m-w
	Aromatic	1600-1400	6.25-7.14	m-w
$\mathrm{C} \equiv \mathrm{C}$	Alkyne	2250-2100	4.44-4.76	m-w
$\mathrm{C}=0$	Aldehyde	1740-1720	5.75-5.81	s
	Ketone	1725-1705	5.80-5.87	s
	Carboxylic acid	1725-1700	5.80-5.88	s
	Ester	1750-1730	5.71-5.78	s
	Amide	1700-1640	5.88-6.10	s
	Anhydride	ca. 1810	ca. 5.52	s
		ca. 1760	ca. 5.68	s
	Acyl chloride	1800	5.55	s
C-O	Alcohols, Ethers, Esters,			
	Carboxylic acids	1300-1000	7.69-10.0	s
O-H	Alcohols, Phenols			
	Free	3650-3600	2.74-2.78	m
	H-Bonded	3400-3200	2.94-3.12	m
	Carboxylic acids (2)	3300-2500	3.03-4.00	m
$\mathrm{N}-\mathrm{H}$	Primary and secondary amines	ca. 3500	ca. 2.86	m
$\mathrm{C} \equiv \mathrm{N}$	Nitriles	2260-2240	4.42-4.46	m
$\mathrm{N}=0$	Nitro ($\mathrm{R}-\mathrm{NO}_{2}$)	1600-1500	6.25-6.67	s
		1400-1300	7.14-7.69	s
C-X	Fluoride	1400-1000	7.14-10.0	s
	Chloride	800-600	12.5-16.7	s
	Bromide, lodide	<600	>16.7	s

[^0]
PERIODIC TABLE

1																	18
1A																	8A
н	2											13	14	15	16	17	${ }^{2}$
${ }_{\text {H }}^{\text {H }}$ H	2A											3A	4A	5A	6A	7A	He_{4}
3	4											5	${ }^{6}$	7	8	9	4.003
Li	Be											B	C	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	${ }^{20}$	${ }^{21}$	22	${ }^{23}$	${ }^{24}$	25	26	27	28	${ }^{29}$	30	31	32	33	34	35	36
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	${ }^{41}$	42	${ }^{43}$	44	45	46	47	48	49	50	${ }^{51}$	52	53	${ }^{54}$
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57*	${ }^{72}$	${ }^{73}$	74	75	76	77	78	79	80	81	82	${ }^{83}$	${ }^{84}$	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	${ }^{88}$	89**	104	105	106	107	108	109	110	111							
Fr	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt	Uun	Uuu							
(223)	226.0	(227)	(261)	(262)	(263)	(262)	(265)	(260)	(269)	(272)							

*	58	59	60	${ }^{61}$	${ }^{62}$	${ }^{63}$	64	${ }^{65}$	${ }^{66}$	67	68	69	70	${ }^{71}$
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Actinides **	${ }^{90}$	${ }^{91}$	92	${ }^{93}$	94	95	96	97	98	${ }^{99}$	100	${ }^{101}$	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

[^0]: (1) $s=$ strong, $m=$ medium and $w=$ weak
 (2) note that the -OH absorption of solid carboxylic acids which run as a nujol mull can be difficult to see as they maybe very broad.

