FACULTY OF SCIENCE

MIDTERM EXAMINATION

CHEMISTRY 353
THURSDAY MARCH 7th, 2024

Time: 2 Hours

READ ALL THE INSTRUCTIONS CAREFULLY

PLEASE WRITE YOUR NAME, STUDENT I.D. NUMBER ON BOTH YOUR MULTIPLE CHOICE ANSWER SHEET AND LONG ANSWER SHEET. ENTER VERSION NUMBER 1 ON THE MULTIPLE CHOICE ANSWER SHEET

The exam consists of Parts 1-7, each of which should be attempted. Some Parts provide you with a choice of questions, e.g. answer any 5 out of 6 . These will be graded in numerical order until the required number have been completed, regardless of whether they are right or wrong. Parts 1-4 will be computer graded, and Parts 5, 6 and 7 are to be answered IN THE APPROPRIATE BOX ON THE LONG ANSWER SHEET PROVIDED.

A periodic table with atomic numbers and atomic weights and spectroscopic data tables and 2 pages of scrap paper for rough work are included with this examination paper.
Parts 1-4 consist of a series of multiple choice questions numbered 1-34 which are to be answered on the multiple choice answer sheet. Indicate your answer by completely blackening out the appropriate space, A, B, C, D or E on the answer sheet. Use a soft pencil only, not ink. In some cases it is required that you indicate multiple items for a complete and/or correct answer by blackening out more than one space. In some other cases, more than five options are available and some of these also require more than one space to be blackened out. For an example, an option specified as $A B$ requires that you blacken out both space A and space B. Part marks may be awarded in some of the questions. Incorrect answers must be erased cleanly.
Molecular models are permitted during the exam; calculators are also permitted, but NOT programmable calculators.
Absolutely no other electronic devices are allowed.

16\% PART 1: RELATIVE PROPERTIES

ANSWER ANY EIGHT (8) OF QUESTIONS 1-10.

Arrange the items in each of the questions in this section in DECREASING ORDER (i.e. greatest first) with respect to the indicated property.

Use the following code to indicate your answers.
A. \quad i $>$ ii $>$ iii
D. \quad ii $>\mathrm{iii}>$ i
B. $\quad \mathrm{i}>\mathrm{iii}>\mathrm{ii}$
E. \quad iii $>\mathrm{i}>\mathrm{ii}$
C. $\quad \mathrm{ii}>\mathrm{i}>\mathrm{iii}$
AB. \quad iii $>\mathrm{ii}>\mathbf{i}$

1. The relative reactivity of each of the following towards aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$:

i

ii

iii
2. The relative stability of the following carbocations:
\oplus

ii

iii
3. The relative $\mathrm{p} K_{a}$ of the most acidic proton in each of the following:
NH_{3}
i

ii

iii
4. The relative yields of each of the following products from the reaction of phenylethyne with H_{2} / Pd:

i

ii

iii
5. The number of possible geometric isomers of each of the following hydrocarbons:
hexa-1,3-diene
i
hexa-1,5-diene
ii
hexa-2,4-diene
iii

Use the following code to indicate your answers.

A. $\quad \mathrm{i}>\mathrm{ii}>$ iii
D. $\mathrm{ii}>\mathrm{iii}>\mathrm{i}$
B. $\quad \mathrm{i}>\mathrm{iii}>\mathrm{ii}$
E. iii $>\mathrm{i}>$ ii
C. \quad ii $>\mathrm{i}>$ iii
AB. $\quad \mathrm{iii}>\mathrm{ii}>\mathrm{i}$
6. The relative yields of each of the following products from the reaction of 2-methyl-2butene with MCPBA followed by acidic methanol:

i

ii

iii
7. The relative reactivity of each of the following dienes towards but-3-en-2-one:

i

ii

iii
8. The observed optical rotations of the following solutions, given that (S)-2bromobutane has a specific rotation value $[\alpha]_{D}=+23^{\circ}$.
$1 \mathrm{~g}(\mathrm{~S})$-isomer
$0.7 \mathrm{~g}(\mathrm{~S})$-isomer
$1 \mathrm{~g}(\mathrm{~S})$-isomer 10 mL solvent cell $=1.25 \mathrm{dm}$
i
10 mL solvent cell $=1 \mathrm{dm}$
ii 1 mL solvent cell $=0.1 \mathrm{dm}$
iii
9. The relative yields of each of the following from the reaction of 1-methylcyclohexa-

1,3 -diene with Cl_{2} at $100^{\circ} \mathrm{C}$:

i

ii

iii
10. The number of configurational isomers of each of the following:

i

ii

iii

ANSWER ANY SEVEN (7) OF QUESTIONS 11-18.
For each of questions 11-18 select the MISSING component (starting material, product or reagents) required in order to BEST complete each reaction scheme.
11.

1) KMnO_{4}, aq $\mathrm{NaOH}, 0^{\circ} \mathrm{C}$
2) $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat

A

B

C

D

excess $\mathrm{HBr} /$ dark

D
$\mathrm{Br}_{2} /$ dark
E
12.

$\begin{array}{cc}\mathrm{Br}_{2} / \text { uv } & \text { NBS } \\ \text { A } & \mathbf{B}\end{array}$
13.

excess
$\mathrm{HBr} /$ peroxides
C

E

A

B

C

D

E
14.

15.

A

B

C

D

E
16.

A

B

1) $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$
2) $\mathrm{Na}_{2} \mathrm{CO}_{3}$, heat
3) $\mathrm{HC} \equiv \mathrm{CNa}$
4) aqueous workup

C

D

E
17.

A. 1) H_{2}, Lindlar's cat. 2) KMnO_{4}, aq $\mathrm{KOH}, 0^{\circ} \mathrm{C}$
B. 1) H_{2}, Lindlar's cat. 2) MCPBA 3) aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. 1) $\mathrm{Na} / \mathrm{NH}_{3}$ 2) MCPBA \quad 3) aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. 1) $\mathrm{Na} / \mathrm{NH}_{3}$ 2) $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$ 3) $\mathrm{Na}_{2} \mathrm{CO}_{3}$, heat
E. 1) NaNH_{2} 2) aq. $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HgSO}_{4}$
18.

A

B

C

D

E

PART 3: REGIOCHEMISTRY and STEREOCHEMISTRY OF REACTIONS
ANSWER ANY SIX (6) OF QUESTIONS 19-25.
For each of the questions 19-25, select the structure required to BEST complete the reaction shown.
19.

A^{Cl}

B

C

20.

A

B

C

D

E
21.

A

B

C
D

E
22.

A

B

C

D

E
23.

A 1. $\mathrm{EtO}_{2} \mathrm{C}=\mathrm{CO}_{2} \mathrm{Et} /$ heat 2. $\mathrm{Na} / \mathrm{NH}_{3}$
B 1. $\mathrm{EtO}_{2} \mathrm{C}=\mathrm{CO}_{2} \mathrm{Et} /$ heat 2. $\mathrm{H}_{2} / \mathrm{Pd}$
C 1. $\mathrm{EtO}_{2} \mathrm{C} \mathrm{CO}_{2} \mathrm{Et} /$ heat $2 . \mathrm{H}_{2} /$ Lindlar's cat.
D 1. $\mathrm{EtO}_{2} \mathrm{C} \mathrm{CO}_{2} \mathrm{Et} /$ heat $2 . \mathrm{H}_{2} / \mathrm{Pd}$
$\mathrm{E} \quad \mathrm{EtO}_{2} \mathrm{C} \mathrm{CO}_{2} \mathrm{Et}$ / heat
24.

25.

A

B

C
?

D

E

16\%

PART 4: PI SYSTEMS

ANSWER ANY EIGHT (8) of the questions 26-34.

For each of the questions 26-34 select the appropriate answer from the answers provided. In some cases more than one selection may be required for full credit.
26. Which of the following contain conjugated systems? (select all that apply)

A

B

C

D

E
27. Which of the following systems are resonance contributors of the cation shown to the right ?
 (select all that apply)

A

B

C

D

E
28. Which of the following is the most reactive towards 1,3-butadiene:

A

B

C

D

E
29. Which of the following isomers has the most exothermic heat of hydrogenation?

A

B

C

D

E
30. Which of the following molecules is the s-cis form of (3Z)-2,3-dimethylpenta-1,3diene?

A

B

D

E
31. Which of the following molecules has the most allylic hydrogens?

A

B

C

D

E
32. Which of the following best represents a step in the mechanism of the reaction of propene with Cl_{2} at $0^{\circ} \mathrm{C}$?

B

C

D

E
33. Which of the following systems react with $\mathrm{Na} / \mathrm{NH}_{3}$ (select all that apply) ?

A

B

C

D

E
34. Which of the CC bonds indicated below is the longest?

PART 5: SYNTHESIS

WRITE YOUR ANSWER IN THE APPROPRIATE BOX ON THE LONG ANSWER SHEET PROVIDED

ANSWER THREE (3) QUESTIONS, ONE FROM EACH OF 5.1, 5.2 AND 5.3

Design an efficient synthesis of THREE (3) of the following target molecules
SHOW YOUR ANSWER AS A STEPWISE REACTION SCHEME SHOWING THE REAGENT REQUIRED AND PRODUCT OF EACH STEP

DO NOT SHOW MECHANISMS (i.e. curly arrows are NOT required)

Allowed starting materials and reagents:

Any hydrocarbons with 4 or less \mathbf{C} atoms
and / or Any solvents or reagents that do not contribute carbon atoms to the final structure.

A
or
B
5.1

or

AND
5.2

or

AND
5.3

or

PART 6: MECHANISMS

WRITE YOUR ANSWER IN THE APPROPRIATE BOX ON THE LONG ANSWER SHEET PROVIDED

ANSWER TWO (2) QUESTIONS, ONE FROM PART 6.1 AND ONE FROM PART 6.2

Draw curly arrow mechanisms to explain the following reactions / observations.
No other reagents are required.
6.1. Show the mechanism for one of the following reactions:

A

OR

AND

6.2. Show the mechanism for one of the following reactions to predict the major product :
A

OR
B

?

WRITE YOUR ANSWER IN THE APPROPRIATE BOX ON THE LONG ANSWER SHEET PROVIDED

Use the information in the following paragraph to answer the questions below.

Compound $\mathbf{A}\left(\mathrm{C}_{6} \mathrm{H}_{10}\right)$ was reacted with sodium in liquid ammonia to give \mathbf{B}. Subsequent reaction of \mathbf{B} with bromine gave \mathbf{C} which was found to exist as a single configurational isomer and optically inactive. When C was then heated with $\mathrm{KOH} /$ EtOH , the major product was \mathbf{D}, an isomer of \mathbf{A}.

When compound \mathbf{D} was heated with ethene in a sealed vessel, \mathbf{E}, was the major product. When compound E was reacted with excess H_{2} over Pd gave cis-1,4dimethylcyclohexane as the major product.

Draw the structures of A to E. Include 3D stereochemistry where appropriate.

What is the IUPAC name for D ?

*** THE END ***

IRH / TS / W24

SPECTROSCOPIC TABLES

${ }^{1} \mathrm{H}$ NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm

	$\begin{aligned} \mathbf{R}= & \text { methyl } \\ & -\mathrm{CH}_{3} \end{aligned}$	methylene $-\mathrm{CH}_{2}-$	methyne $-\stackrel{1}{\mathrm{C}} \mathrm{H}$	other	
R-C	0.9	1.4	1.5	$\mathrm{sp}^{3} \mathrm{C}-\mathrm{OH}$	1-5
				$\mathrm{sp}^{3} \mathrm{C}-\mathrm{NH}$	1-3
	- 1.6	2.3	2.6	$\mathrm{C} \equiv \mathrm{CH}$	2.5
	2.1	2.4	2.5		4.5-6.5
$\mathrm{R}-\mathrm{N}^{\prime}$	/ 2.2	2.5	2.9		6.5-8
R	1 2.3	2.7	3.0		9-10
$\mathrm{R}-\mathrm{Br}$	$\begin{array}{ll}\text { r } & 2.7\end{array}$	3.3	4.1	0	
R-CI	I 3.1	3.4	4.1		9-12
R-0-	- 3.3	3.4	3.7		

${ }^{13} \mathrm{C}$ NMR

carboxylic acid derivative
e.g. ester, amide, acid halide, acid anhydride

$$
\mathrm{LG}=\mathrm{O}, \mathrm{~N} \text { or } \mathrm{Cl}
$$

${ }^{13} \mathrm{C}$ NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm

$\begin{gathered} -\mathrm{CH}_{3} \\ 0-30 \end{gathered}$	$\xrightarrow[10-50]{\stackrel{\rightharpoonup}{C H}}$		
$\begin{gathered} \text { — }=\mathbf{C}- \\ 65-90 \end{gathered}$			
110-170			
			$\begin{array}{r} -C \equiv N \\ 110-140 \end{array}$

INFRA-RED GROUP ABSORPTION FREQUENCIES

	TYPE OF VIBRATION	FREQUENCY $\left(\mathrm{cm}^{-1}\right)$	WAVELENGTH (μ)	INTENSITY (1)
C-H	Alkanes (stretch)	3000-2850	3.33-3.51	s
	$-\mathrm{CH}_{3}$ (bend)	1450 and 1375	6.90 and 7.27	m
	- $\mathrm{CH}_{2}{ }^{-}$(bend)	1465	6.83	m
	Alkenes (stretch)	3100-3000	3.23-3.33	m
	(bend)	1700-1000	5.88-10.0	s
	Aromatics (stretch)	3150-3050	3.17-3.28	s
	(out-of-plane bend)	1000-700	10.0-14.3	s
	Alkyne (stretch)	ca. 3300	ca.3.03	s
	Aldehyde	2900-2800	3.45-3.57	w
		2800-2700	3.57-3.70	w
C-C	Alkane not usually useful			
$\mathrm{C}=\mathrm{C}$	Alkene	1680-1600	5.95-6.25	m-w
	Aromatic	1600-1400	6.25-7.14	m-w
$\mathrm{C}=\mathrm{C}$	Alkyne	2250-2100	4.44-4.76	m-w
$\mathrm{C}=0$	Aldehyde	1740-1720	5.75-5.81	s
	Ketone	1725-1705	5.80-5.87	s
	Carboxylic acid	1725-1700	5.80-5.88	s
	Ester	1750-1730	5.71-5.78	s
	Amide	1700-1640	5.88-6.10	s
	Anhydride	ca. 1810	ca. 5.52	s
		ca. 1760	ca. 5.68	s
	Acyl chloride	1800	5.55	s
C-O	Alcohols, Ethers, Esters,			
	Carboxylic acids	1300-1000	7.69-10.0	s
O-H	Alcohols, Phenols			
	Free	3650-3600	2.74-2.78	m
	H-Bonded	3400-3200	2.94-3.12	m
	Carboxylic acids (2)	3300-2500	3.03-4.00	m
N-H	Primary and secondary amines	ca. 3500	ca. 2.86	m
$\mathrm{C}=\mathrm{N}$	Nitriles	2260-2240	4.42-4.46	m
$\mathrm{N}=\mathrm{O}$	Nitro ($\mathrm{R}-\mathrm{NO}_{2}$)	1600-1500	6.25-6.67	s
		1400-1300	7.14-7.69	s
C-X	Fluoride	1400-1000	7.14-10.0	s
	Chloride	800-600	12.5-16.7	s
	Bromide, Iodide	<600	>16.7	s

(1) $s=$ strong, $m=$ medium and $w=$ weak
(2) note that the - OH absorption of solid carboxylic acids which run as a nujol mull can be difficult to see as they maybe very broad.

PERIODIC TABLE

Lanthanides *	58	59	${ }^{60}$	${ }^{61}$	${ }^{62}$	${ }^{63}$	${ }^{64}$	65	${ }^{66}$	${ }^{67}$	${ }^{68}$	69	70	${ }^{71}$
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Actinides **	90	91	92	${ }^{93}$	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

SCRAP PAPER

SCRAP PAPER

